Practical statistics for data scientists 50 essential concepts

Inhaltsverzeichnis: Exploratory data analysis -- Data and sampling distributions -- Statistical experiments and significance testing -- Regression and prediction -- Classification -- Statistical machine learning -- Unsupervised learning.

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bruce, Peter C. (VerfasserIn)
Weitere Verfasser: Bruce, Andrew (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Beijing, Boston, Farnham, Sebastopol, Tokyo O'Reilly May 2017
Ausgabe:First edition
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inhaltsverzeichnis: Exploratory data analysis -- Data and sampling distributions -- Statistical experiments and significance testing -- Regression and prediction -- Classification -- Statistical machine learning -- Unsupervised learning.
Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you are familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you'll learn: Why exploratory data analysis is a key preliminary step in data science ; How random sampling can reduce bias and yield a higher-quality dataset, even with big data ; How the principles of experimental design yield definitive answers to questions ; How to use regression to estimate outcomes and detect anomalies ; Key classification techniques for predicting which categories a record belongs to ; Statistical machine learning methods that "learn" from data ; Unsupervised learning methods for extracting meaning from unlabeled data.
Beschreibung:Hier auch später erschienene, unveränderte Nachdrucke
Beschreibung:xvi, 298 Seiten
Illustrationen, Diagramme
ISBN:9781491952962
978-1-4919-5296-2