Functional and shape data analysis

Motivation for function and shape analysis -- Previous techniques in shape analysis -- Background : relevant tools from geometry -- Functional data and elastic registration -- Shapes of planar curves -- Shapes of planar closed curves -- Statistical modeling on nonlinear manifolds -- Statistical mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Srivastava, Anuj (VerfasserIn)
Weitere Verfasser: Klassen, Eric (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: New York Springer 2016
Schriftenreihe:Springer series in statistics
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Inhaltstext
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivation for function and shape analysis -- Previous techniques in shape analysis -- Background : relevant tools from geometry -- Functional data and elastic registration -- Shapes of planar curves -- Shapes of planar closed curves -- Statistical modeling on nonlinear manifolds -- Statistical modeling of functional data -- Statistical modeling of planar shapes -- Shapes of curves in higher dimensions -- Related topics in shape analysis of curves -- Background material -- The dynamic programming algorithm
This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. Covering a broad range of ideas from different disciplines, it is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. Recently, a data-driven and application-oriented focus on shape analysis has been trending. This text offers a self-contained treatment of this new generation of methods in shape analysis of curves. Its main focus is shape analysis of functions and curves--in one, two, and higher dimensions--both closed and open. It develops elegant Riemannian frameworks that provide both quantification of shape differences and registration of curves at the same time. Additionally, these methods are used for statistically summarizing given curve data, performing dimension reduction, and modeling observed variability
Beschreibung:Literaturverzeichnis: Seite 439-443
Beschreibung:xviii, 447 Seiten
Illustrationen, Diagramme
25.4 cm x 17.8 cm, 0 g
ISBN:9781493940189
978-1-4939-4018-9
149394018X
1-4939-4018-X