Approaching highly efficient organic solar cells via interface engineering

Ilmenau, Techn. Univ., Diss., 2014

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Synooka, Olesia (VerfasserIn)
Weitere Verfasser: Gobsch, Gerhard (BerichterstatterIn), Hauff, Elizabeth von (BerichterstatterIn), Beenken, Wichard J. D. (BerichterstatterIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Ilmenau 2014
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Kurzbeschreibung
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ilmenau, Techn. Univ., Diss., 2014
Organische Solarzellen sind sehr viel versprechende erneuerbare Energiequellen. Während der ca. letzten 2 Jahrzehnte konnte eine bedeutende Verbesserung im Verständnis der Grundlagen von Solarzellen gewonnen werden. Dies hat zu einer Verbesserung der Effizienz auf mehr als 9% Ausbeute geführt. Die Leistungsfähigkeit von bulk-heterojunction organischen Solarzellen basiert im Wesentlichen auf folgenden Effekten: Ladungstrennung, Ladungstransport und Ladungsextraktion. Diese Effekte können durch Modifikation der fotoaktiven Materialien und/oder der Grenzflächen kontrolliert werden. Die Grenzflächenprobleme von organischen Solarzellen sind seit vielen Jahren unbeachtet geblieben, stattdessen wurde der Fokus auf die Entwicklung und Optimierung von neuen Aktivschichtmaterialien gesetzt. In dieser Doktorarbeit sind alle Grenzflächen von organischen Solarzellen im Detailuntersucht worden, wie: - 1 die Donator-Akzeptor Grenzfläche, - 2 der Lochtransport/Aktivschicht-Grenzfläche und - 3 die Aktivschicht-/Metallelektroden-Grenzfläche. Weiter wurden explizite Methoden zur Verbesserung der Grenzflächen vorgeschlagen. 1. - Im Besonderen wurde die Donator-Akzeptor Grenzflächenmodifikation bei thermischer Behandlung im Umfang der vertikalen Phasensegregation untersucht. In dieser Arbeit wurden unterschiedliche Messtechniken an Filmschichten und hergestellten Proben vom Gemisch des "State-of-the-Art" Polymers poly[N-9"-hepta-decanyl-2,7-carbazole-alt-5,5-(4'7'-di-2-thienyl-2',1',3'-benothiadiazole)] (PCDTBT) mit [6,6]-phenyl-C 71-butyric acid methyl ester (PC 70 BM) angewendet, um die Modifikationen der Morphologie zu untersuchen. Die Performance von PCDTBT:PC 70 BM basierend Solarzellen wird durch thermische Behandlung mit hohen Temperaturen dramatisch verringert. Untersuchungen im Detail zeigen, dass Änderungen der Polymer:Fulleren Wechselwirkungen bei bereits 140°C auftreten, welche in einer Polymerbenetzung nahe der Metallelektrode resultiert. Dies führt zu einem Anstieg von Rekombinationen und zur Verringerung der Ladungsträgerextraktion. Dadurch kommt es zu einer Reduktion des Füllfaktors und zu einer reduzierten Effizienz der Leistungsumwandlung. Die Untersuchung der PCDTBT basierenden invertierten Solarzellenzeigen einen genau umgekehrten Trend bei thermischer Behandlung. Die gesamte Solarzellenperformance steigt mit der Temperaturerhöhung linear an. In diesem Fall ist die Polymerbenetzung vorteilhaft. Zusätzlich wurde die thermische Stabilität von Solarzellen basierend auf amorphem PCDTBT oder dem neuartigen semikristallinen Polymer poly[2,6[4,8-bis(2-ethyl-hexyl)benzo[1,2-b;4,5-b']dithiophene-co-2,5-thiophene-co-4,7[5,6-bis-octyloxy-benzo[1,2,5]thiadiazole]-co-2,5-thiophene] (PBDTTBTZT) untersucht. Die polymere haben eine ähnliche chemische Struktur und Bandlücke. Es konnte eine Effizienz von mehr als 7% bei PBDTTBTZT basierenden Solarzellen erreicht werden. Bei thermischer Behandlung sind nur geringste Verluste der photovoltaischen Parameter ohne eine vertikale Phasensegregation herausgefunden worden. Die außergewöhnliche thermische Stabilität des PBDTTBTZT von bis zu 170°C könnte durch die semikristalline Natur zu erklären sein. PBDTTBTZT ist ein vielversprechendes Material für zukünftige Anwendungen von organischen Solarzellen. 2. - Weiterhin wurde die Lochtransportschicht/Aktivschicht-Grenzfläche untersucht, welche anhand durch Zugabe zusätzlicher polarer Lösemittel zur Aktivschicht modifiziert wurde. Generell kann die Morphologie der bulk-heterojunction durch Verwendung von Additiven mit höherem Siedepunkt als das Lösemittel der Aktivschicht beeinflusst werden. Im Gegensatz zu dieser Eigenschaft wurden in dieser Arbeit polare Lösemittel-Additive mit unterschiedlichen Dipol-Momenten und unabhängigen Siedepunkten verwendet. Die Performance der PCDTBT:PC 70 BM Solarzellen kann durch Zugabe einer bestimmten Menge dieser Additive verbessert werden. Dieser vorteilhafte Effekt kann größtenteils durch die Modifikation der PEDOT:PPS/Aktivschicht-Grenzfläche der Solarzelle erzielt werden. Die Lösemitteladditive dringen durch die gesamte Aktivschicht und entfernen teilweise den PSS-Anteil der PEDOT:PSS Oberflächenschicht, dass zu einer Reduktion der Energiebarriere und zu einer verbesserten Loch-Extraktion führt. 3. - Zuletzt wurde die Modifikation der Aktivschicht/Metallkathoden-Grenzfläche der Solarzelle mit einer zusätzlichen Zwischenschicht untersucht. Das konjugierte Polyelektrolyt:poly(diallyldimethylammonium chloride) (PDDA) und das nichtkonjugierte poly(allylaminehydrochloride) (PAH), wurden als Zwischenschichtmaterialien in dieser Arbeit untersucht. Solche Zwischenschichten, basierend auf konjugierten Polyelektrolyten (KPE), verbessern den elektrischen Kontakt und verringern den potentiell möglichen Widerstand, was zu einer verbesserten Performance der Solarzelle führt. Im Gegensatz zu den bekannten und weit verbreiteten KPE wurden die nicht konjugierten Polyelektrolyte (nKPE) bis zum jetzigen Zeitpunkt für organische Solarzellen nicht verwendet, laut der für diese Arbeit angefertigten ausführlichen Literaturrecherche. Verschiedene Messtechniken sind bei entsprechend angefertigten Solarzellen angewendet worden, um die unterschiedlichen Effekte von KPE und nKPE voneinander zu unterscheiden. Eine Verbesserung der Performance der Solarzellen ist das Ergebnis einer optimierten Anpassung des Energieniveaus an den Grenzflächen und verminderte Oberflächenkombinationen konnten für beide Polyelektrolyttypen herausgefunden werden. Die KPE verursachen geringfügige Veränderungen der Oberflächenstöchiometrie, was aber nicht bei nKPE beobachtet worden ist. Die Verwendung von KPE oder nKPE resultierte in vergleichbar guten Performance Verbesserungen. Daraus lässt sich ableiten, dass die nKPE ein guter und preiswerter Ersatz für KPE sind. Diese Arbeit zeigt die Wechselwirkung zwischen allen Grenzflächen innerhalb der Solarzellen und empfiehlt Leitlinien für die Herstellung zukünftiger "next generation" organischer Solarzellen.
Beschreibung:VIII, 117 S.
Ill., graph. Darst.