Decay of the Fourier transform analytic and geometric aspects

1. Basic properties of the Fourier transform2. Oscillatory integrals -- 3. The Fourier transform of convex and oscillating functions -- 4. The Fourier transform of a radial function -- 5. L²-average decay of the Fourier transform of a characteristic function of a convex set -- 6. L¹-average decay of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Iosevich, Alex (VerfasserIn)
Weitere Verfasser: Liflyand, Elijah (BerichterstatterIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Basel, Heidelberg u.a. Birkhäuser u.a. 2014
Schlagworte:
Online Zugang:Verlagsangaben
Inhaltsverzeichnis
Cover
Inhaltstext
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. Basic properties of the Fourier transform2. Oscillatory integrals -- 3. The Fourier transform of convex and oscillating functions -- 4. The Fourier transform of a radial function -- 5. L²-average decay of the Fourier transform of a characteristic function of a convex set -- 6. L¹-average decay of the Fourier transform of a characteristic function of a convex set -- 7. Geometry of the Gauss map and lattice points in convex domains -- 8. Average decay estimates for Fourier transforms of measures supported on curves.
The Plancherel formula says that the L² norm of the function is equal to the L² norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L² function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L² setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration--
The Plancherel formula says that the L² norm of the function is equal to the L² norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L² function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L² setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration--
Beschreibung:Literaturverz. S. 207 - 219
Beschreibung:XII, 222 S.
graph. Darst.
ISBN:9783034806244
978-3-0348-0624-4
3034806248
3-0348-0624-8