Artificial neural networks and machine learning - ICANN 2014 24th International Conference on Artificial Neural Networks, Hamburg, Germany, September 15 - 19, 2014 ; proceedings
Recurrent NetworksSequence Learning -- Echo State Networks -- Recurrent Network Theory -- Competitive Learning and Self-Organisation.- Clustering and Classification -- Trees and Graphs -- Human-Machine Interaction -- Deep Networks.- Theory -- Optimization -- Layered Networks -- Reinforcement Learnin...
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | , , , , , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Cham u.a.
Springer
2014
|
Schriftenreihe: | Lecture notes in computer science
8681 |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis Cover |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recurrent NetworksSequence Learning -- Echo State Networks -- Recurrent Network Theory -- Competitive Learning and Self-Organisation.- Clustering and Classification -- Trees and Graphs -- Human-Machine Interaction -- Deep Networks.- Theory -- Optimization -- Layered Networks -- Reinforcement Learning and Action -- Vision -- Detection and Recognition -- Invariances and Shape Recovery -- Attention and Pose Estimation -- Supervised Learning -- Ensembles -- Regression -- Classification -- Dynamical Models and Time Series -- Neuroscience -- Cortical Models -- Line Attractors and Neural Fields -- Spiking and Single Cell Models -- Applications -- Users and Social Technologies -- Demonstrations. The book constitutes the proceedings of the 24th International Conference on Artificial Neural Networks, ICANN 2014, held in Hamburg, Germany, in September 2014. The 107 papers included in the proceedings were carefully reviewed and selected from 173 submissions. The focus of the papers is on following topics: recurrent networks; competitive learning and self-organisation; clustering and classification; trees and graphs; human-machine interaction; deep networks; theory; reinforcement learning and action; vision; supervised learning; dynamical models and time series; neuroscience; and applications |
---|---|
Beschreibung: | Literaturangaben |
Beschreibung: | XXV, 852 S. |
ISBN: | 9783319111780 978-3-319-11178-0 |