Computational biomedicine modelling the human body

Machine generated contents note: 1. Introduction -- 1.1. Introduction -- 1.2. Systems Biology -- 1.3. Initiatives for Modelling Human Physiology -- 1.4. Book Synopsis -- References -- 2. Molecular Foundations of Computational Bioscience -- 2.1. Introduction -- 2.2. DNA and its Data Formats -- 2.3. R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Coveney, Peter V. (HerausgeberIn), Díaz-Zuccarini, Vanessa (HerausgeberIn), Hunter, Peter (HerausgeberIn), Viceconti, Marco (HerausgeberIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Oxford Oxford University Press 2014
Schlagworte:
Online Zugang:Autorenbiografie
Verlagsangaben
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine generated contents note: 1. Introduction -- 1.1. Introduction -- 1.2. Systems Biology -- 1.3. Initiatives for Modelling Human Physiology -- 1.4. Book Synopsis -- References -- 2. Molecular Foundations of Computational Bioscience -- 2.1. Introduction -- 2.2. DNA and its Data Formats -- 2.3. RNA and its Data Formats -- 2.4. Proteins and their Data Formats -- 2.5. Metabolism, Metabolites, and their Databases -- 2.6. Integrating Different Data Types and Sources -- 2.7. Management of Omics Data Types -- Box 2.1 Example of the Use of Multiple Databases to Answer a Specific Research Question -- 2.8. Software Systems: Security and Interoperability -- 2.9. Conclusions -- Recommended Reading -- References -- 3. From Genotype to Phenotype -- 3.1. Introduction -- 3.2. Quantitative Genetics: A Brief Introduction -- 3.3. Systems Genetics -- Box 3.1 AcGP Model of the Action Potential of a Heart Muscle Cell
Contents note continued: Box 3.2 Refining the Genotype-to-Parameter Map: From Nucleotide Mutation to Protein Conformation to State Switching in Ion Channels -- 3.4. Implementing cGP Models -- Box 3.3 Monte Carlo Methods -- Box 3.4 Models of Gene Regulation -- 3.5. Some cGP Applications -- 3.6. Linking cGP Models to Data -- 3.7. Conclusions -- Recommended Reading -- References -- 4. Image-Based Modelling -- 4.1. Introduction -- 4.2. Image-Based Modelling -- 4.3. Simulating the Physics of Image Formation -- 4.4. Statistical Atlases, Population Imaging, and Modelling -- 4.5. Open-Source Tools for Image-Based Modelling -- 4.6. Conclusions -- Recommended Reading -- References -- 5. Modelling Cell Function -- 5.1. Introduction -- 5.2. General Functions of Cells -- 5.3. Fundamentals of Reactions in Cells -- Box 5.1 The Cell as a Complex System -- 5.4. Formalisms and Abstractions in Cell Modelling -- 5.5. Modelling Approaches -- Box 5.2 Compartmental Models of the Cell Using ODEs
Contents note continued: 5.6. Simulation Tools -- 5.7. Reproducible Cell Modelling -- Box 5.3 Case Study: A Reproducible `Validated' Model of Hepatic Clearance Using ODEs -- 5.8. Conclusions -- Recommended Reading -- References -- 6. Modelling Tissues and Organs -- 6.1. Introduction -- 6.2. Modelling Epithelia -- 6.3. Cardiac Modelling -- Box 6.1 The Navier-Stokes Equations for Fluid flow -- 6.4. Gl Tract Modelling -- 6.5. Modelling Kidney Function and Homeostasis -- 6.6. General Homeostasis and Blood-Pressure Regulation -- 6.7. Conclusions -- Recommended Reading -- References -- 7. Multi-Scale Modelling and Simulation -- 7.1. Introduction: Multi-Scale Modelling in Computational Physiology -- 7.2. Why Multi-Scale Modelling? -- 7.3.A Framework for Multi-Scale Modelling and Computing -- 7.4. Scale Bridging -- 7.5. Multi-Scale Computing -- 7.6. Case Study of a Multi-Scale Model: In-Stent Restenosis in Coronary Arteries -- 7.7. Conclusions -- Recommended Reading -- References
Contents note continued: 8. Workflows: Principles, Tools, and Clinical Applications -- 8.1. Introduction -- 8.2.Computational Workflows -- 8.3. Implementing Workflows -- 8.4. Provenance -- 8.5. Examples of Scientific Workflows -- 8.6. Some Key Considerations in Workflow Design -- 8.7. Conclusions -- List of Projects Referenced -- Recommended Reading -- References -- 9. Distributed Biomedical Computing -- 9.1. Introduction -- 9.2. Parallel Applications -- 9.3. The Computational Ecosystem -- 9.4.Computing Beyond the Desktop -- 9.5. Executing Simulations in a High-Performance Environment -- 9.6. Case Study: Calculating Drug Binding Affinities -- 9.7.Computational Infrastructures -- 9.8. Distributed Applications -- 9.9. Orchestrating Workflows from Distributed Applications -- 9.10. Case Study: Computational Investigations of Cranial Haemodynamics -- 9.11. Conclusions -- Recommended Reading -- References -- 10. Security and Privacy in Sharing Patient Data -- 10.1. Introduction
Contents note continued: 10.2. The Legal Background -- Box 10.1 Regulations and Directives -- 10.3.A Brief Overview of Information Security Concepts -- Box 10.2 Information Security Overview -- 10.4. The Data-Sharing Life Cycle -- 10.5. Data-Sharing Platform Architectures -- 10.6. Conclusions -- Recommended Reading -- References -- 11. Toward Clinical Deployment: Verification and Validation of Models -- 11.1. Introduction: Health Technology Assessment -- Box 11.1 EU Definition of a Medical Device -- 11.2. Code and Model Verification -- 11.3. Sensitivity Analysis -- 11.4. Model Validation -- 11.5. Validation of Integrative Models -- 11.6. Clinical Accuracy -- 11.7. Efficacy, Risk, and Cost-Benefit Analysis -- 11.8. Impact -- 11.9. Sustainability -- 11.10. Conclusions -- Recommended Reading -- References -- Appendix: Markup Languages, Standards, and Model Repositories -- A.1. Introduction -- A.2. Infrastructure for Computational Biomedicine -- A.3. Syntax, Semantics, and Annotation of Models
Contents note continued: A.4. Markup Languages -- A.5. Model Repositories -- A.6. Conclusions -- References
Beschreibung:Formerly CIP. - Includes bibliographical references and index
Beschreibung:XIII, 278 S.
Ill., graph. Darst.
27 cm
ISBN:9780199658183
978-0-19-965818-3