Higher Lp regularity for vector fields that satisfy divergence and rotation constraints in dual Sobolev spaces, and application to some low-frequency Maxwell equations
We show that Lp vector fields over a Lipschitz domain are integrable to higher exponents if their generalized divergence and rotation can be identified with bounded linear operators acting on standard Sobolev spaces. A Div-Curl Lemma-type argument provides compact embedding results for such vector f...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Berlin
Weierstraß-Inst. für Angewandte Analysis und Stochastik Leibniz-Inst. im Forschungsverbund Berlin e. V.
2013
|
Schriftenreihe: | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik
1870 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that Lp vector fields over a Lipschitz domain are integrable to higher exponents if their generalized divergence and rotation can be identified with bounded linear operators acting on standard Sobolev spaces. A Div-Curl Lemma-type argument provides compact embedding results for such vector fields. We investigate the regularity of the solution fields for the low-frequency approximation of the Maxwell equations in time-harmonic regime. We focus on the weak formulation ’in H’ of the problem, in a reference geometrical setting allowing for material heterogeneities. |
---|---|
Beschreibung: | Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden |
Beschreibung: | 27, [2] S. graph. Darst. |