Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy

In this paper we prove the existence of global in time weak solutions for an evolutionary PDE system modelling nonisothermal Landau-de Gennes nematic liquid crystal (LC) flows in three dimensions of space. In our model, the incompressible Navier-Stokes system for the macroscopic velocity u is couple...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Feireisl, Eduard (BerichterstatterIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Berlin WIAS 2013
Schriftenreihe:Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik 1865
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we prove the existence of global in time weak solutions for an evolutionary PDE system modelling nonisothermal Landau-de Gennes nematic liquid crystal (LC) flows in three dimensions of space. In our model, the incompressible Navier-Stokes system for the macroscopic velocity u is coupled to a nonlinear convective parabolic equation describing the evolution of the Q-tensor Q, namely a tensor-valued variable representing the normalized second order moments of the probability distribution function of the LC molecules. The effects of the (absolute) temperature theta are prescribed in the form of an energy balance identity complemented with a global entropy production inequality. Compared to previous contributions, we can consider here the physically realistic singular configuration potential f introduced by Ball and Majumdar. This potential gives rise to severe mathematical difficulties since it introduces, in the Q-tensor equation, a term which is at the same time singular in Q and degenerate in theta. To treat it a careful analysis of the properties of f, particularly of its blow-up rate, is carried out.
Beschreibung:31, [2] S.