Adaptive filtering algorithms and practical implementation

1. Introduction to adaptive filtering -- 2. Fundamentals of adaptive filtering -- 3. The least-mean-square (LMS) algorithm -- 4. LMS-based algorithms -- 5. Conventional RLS adaptive filter -- 6. Data-selective adaptive filtering -- 7. Adaptive lattice-based RLS algorithms -- 8. Fast transversal RLS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Diniz, Paulo Sergio Ramirez (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: New York, NY Springer Science+Business Media 2013
Ausgabe:4th ed.
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. Introduction to adaptive filtering -- 2. Fundamentals of adaptive filtering -- 3. The least-mean-square (LMS) algorithm -- 4. LMS-based algorithms -- 5. Conventional RLS adaptive filter -- 6. Data-selective adaptive filtering -- 7. Adaptive lattice-based RLS algorithms -- 8. Fast transversal RLS algorithms -- 9. QR-decomposition-based RLS filters -- 10. Adaptive HR filters -- 11. Nonlinear adaptive filtering -- 12. Subband adaptive filters -- 13. Blind adaptive filters -- 14. Complex differentiation -- 15. Quantization effects in the LMS algorithm -- 16. Quantization effects in the RLS algorithm -- 17. Kalman filters -- 18. Analysis of set-membership affine projection algorithm.
In the fourth edition of Adaptive Filtering: Algorithms and Practical Implementation, author Paulo S.R. Diniz presents the basic concepts of adaptive signal processing and adaptive filtering in a concise and straightforward manner. The main classes of adaptive filtering algorithms are presented in a unified framework, using clear notations that facilitate actual implementation.The main algorithms are described in tables, which are detailed enough to allow the reader to verify the covered concepts. Many examples address problems drawn from actual applications. New material to this edition includes:Analytical and simulation examples in Chapters 4, 5, 6 and 10Appendix E, which summarizes the analysis of set-membership algorithm Updated problems and referencesProviding a concise background on adaptive filtering, this book covers the family of LMS, affine projection, RLS and data-selective set-membership algorithms as well as nonlinear, sub-band, blind, IIR adaptive filtering, and more.Several problems are included at the end of chapters, and some of these problems address applications. A user-friendly MATLAB package is provided where the reader can easily solve new problems and test algorithms in a quick manner. Additionally, the book provides easy access to working algorithms for practicing engineers.
Beschreibung:XXI, 652 S.
graph. Darst.
ISBN:9781461441052
978-1-4614-4105-2