Geometric structure of high-dimensional data and dimensionality reduction

Pt. 1. Data geometrypt. 2. Linear dimensionality reduction -- pt. 3. Nonlinear dimensionality reduction.

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wang, Jianzhong (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Beijing Higher Education Press 2012
Berlin Springer 2012
Heidelberg u.a.
Schlagworte:
Online Zugang:Inhaltstext
Cover
Inhaltsverzeichnis
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Pt. 1. Data geometrypt. 2. Linear dimensionality reduction -- pt. 3. Nonlinear dimensionality reduction.
Introduction Part I. Data geometry. Preliminary calculus on manifolds -- Geometric structure of high-dimensional data -- Data models and structures of kernels of DR -- Part II. Linear dimensionality reduction. Principal component analysis -- Classical multidimensional scaling -- Random projection -- Part III. Nonlinear dimensionality reduction. Isomaps -- Maximum variance unfolding -- Locally linear embedding -- Local tangent space alignment -- Laplacian Eigenmaps -- Hessian locally linear embedding -- Diffusion maps -- Fast algorithms for DR approximation -- Appendix A. Differential forms and operators on manifolds -- Index.
Beschreibung:Literaturangaben
Beschreibung:XVIII, 356 S.
Ill., graph. Darst.
24 cm
ISBN:9787040317046
978-7-04-031704-6
364227496X
3-642-27496-X
9783642274961
978-3-642-27496-1