Advanced topics in bisimulation and coinduction

Machine generated contents note: Preface; List of contributors; 1. Origins of bisimulation and coinduction Davide Sangiorgi; 2. An introduction to (co)algebra and (co)induction Bart Jacobs and Jan Rutten; 3. The algorithmics of bisimilarity Luca Aceto, Anna Ingolfsdottir and Jiři; Srba; 4. Bisimulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Sangiorgi, Davide (BerichterstatterIn), Rutten, Jan (BerichterstatterIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cambridge u.a. Cambridge University Press 2012
Schriftenreihe:Cambridge tracts in theoretical computer science 52
Schlagworte:
Online Zugang:Cover
Autorenbiografie
Verlagsangaben
Inhaltsverzeichnis
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Machine generated contents note: Preface; List of contributors; 1. Origins of bisimulation and coinduction Davide Sangiorgi; 2. An introduction to (co)algebra and (co)induction Bart Jacobs and Jan Rutten; 3. The algorithmics of bisimilarity Luca Aceto, Anna Ingolfsdottir and Jiři; Srba; 4. Bisimulation and logic Colin Stirling; 5. Howe's method for higher-order languages Andrew Pitts; 6. Enhancements of the bisimulation proof method Damien Pous and Davide Sangiorgi; 7. Probabilistic bisimulation Prakash Panangaden.
"Coinduction is a method for specifying and reasoning about infinite data types and automata with infinite behaviour. In recent years, it has come to play an ever more important role in the theory of computing. It is studied in many disciplines, including process theory and concurrency, modal logic and automata theory. Typically, coinductive proofs demonstrate the equivalence of two objects by constructing a suitable bisimulation relation between them. This collection of surveys is aimed at both researchers and Master's students in computer science and mathematics and deals with various aspects of bisimulation and coinduction, with an emphasis on process theory. Seven chapters cover the following topics: history, algebra and coalgebra, algorithmics, logic, higher-order languages, enhancements of the bisimulation proof method, and probabilities. Exercises are also included to help the reader master new material"--
Beschreibung:Includes bibliographical references and index
Beschreibung:XIII, 326 S.
Ill., graph. Darst.
24 cm
ISBN:9781107004979
978-1-107-00497-9
1107004977
1-107-00497-7