Homotopy theory of higher categories [from segal categories to n-categories and beyond]
Part I. Higher Categories: 1. History and motivation; 2. Strict n-categories; 3. Fundamental elements of n-categories; 4. Operadic approaches; 5. Simplicial approaches; 6. Weak enrichment over a cartesian model category: an introduction -- Part II. Categorical Preliminaries: 7. Model categories; 8....
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Cambridge u.a.
Cambridge Univ. Press
2012
|
Ausgabe: | 1. publ. |
Schriftenreihe: | New mathematical monographs
19 |
Schlagworte: | |
Online Zugang: | Cover Inhaltstext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Part I. Higher Categories: 1. History and motivation; 2. Strict n-categories; 3. Fundamental elements of n-categories; 4. Operadic approaches; 5. Simplicial approaches; 6. Weak enrichment over a cartesian model category: an introduction -- Part II. Categorical Preliminaries: 7. Model categories; 8. Cell complexes in locally presentable categories; 9. Direct left Bousfield localization -- Part III. Generators and Relations: 10. Precategories; 11. Algebraic theories in model categories; 12. Weak equivalences; 13. Cofibrations; 14. Calculus of generators and relations; 15. Generators and relations for Segal categories -- Part IV. The Model Structure: 186 Sequentially free precategories; 17. Products; 18. Intervals; 19. The model category of M-enriched precategories -- Part V. Higher Category Theory: 20. Iterated higher categories; 21. Higher categorical techniques; 22. Limits of weak enriched categories; 23. Stabilization. "The study of higher categories is attracting growing interest for its many applications in topology, algebraic geometry, mathematical physics and category theory. In this highly readable book, Carlos Simpson develops a full set of homotopical algebra techniques and proposes a working theory of higher categories. Starting with a cohesive overview of the many different approaches currently used by researchers, the author proceeds with a detailed exposition of one of the most widely used techniques: the construction of a Cartesian Quillen model structure for higher categories. The fully iterative construction applies to enrichment over any Cartesian model category, and yields model categories for weakly associative n-categories and Segal n-categories. A corollary is the construction of higher functor categories which fit together to form the (n+1)-category of n-categories. The approach uses Tamsamani's definition based on Segal's ideas, iterated as in Pelissier's thesis using modern techniques due to Barwick, Bergner, Lurie and others"-- |
---|---|
Beschreibung: | Untertitel auf cover: From segal categories to n-categories and beyond |
Beschreibung: | XVIII, 634 S. graph. Darst. |
ISBN: | 9780521516952 978-0-521-51695-2 |