Thermodynamics and the destruction of resources
Machine generated contents note: Introduction Bhavik R. Bakshi,Timothy Gutowski, Dusan Sekulic; Part I. Foundations: 1. Thermodynamics: generalized available energy and availability or exergy Elias Gyftopoulos; 2. Energy and exergy: does one need both concepts for a study of resources use Dusan Seku...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Cambridge u.a.
Cambridge University Press
2011
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Machine generated contents note: Introduction Bhavik R. Bakshi,Timothy Gutowski, Dusan Sekulic; Part I. Foundations: 1. Thermodynamics: generalized available energy and availability or exergy Elias Gyftopoulos; 2. Energy and exergy: does one need both concepts for a study of resources use Dusan Sekulic; 3. Accounting for resource use via thermodynamics Bhavik R. Bakshi, Anil Baral, Jorge L. Hau; Part II. Products & processes: 4. Material separation and recycling Timothy Gutowski; 5. Entropy based metric for transformational technologies development Dusan Sekulic; 6. Thermodynamic analysis of resources used in manufacturing processes Timothy Gutowski, Dusan Sekulic; 7. Case studies in energy use to realize ultra-high purities in semiconductor manufacturing Eric Williams, Nikhil Krishnan, Sarah Boyd; 8. Energy resources and use: the present (2008) situation, possible sustainable paths to the future and the thermodynamic perspective Noam Lior; Part III. Life cycle assessments & metrics: 9. Using thermodynamics and statistics to improve the quality of life cycle inventory data Bhavik R. Bakshi, Hangjoon Kim, Prem K. Goel; 10. Developing sustainable technology: metrics from thermodynamics Geert Van der Vorst, Jo Dewulf, Herman Van Langenhove; 11. Entropy production and resource consumption in life cycle assessments Stefan Gössling-Reisemann; 12. Exergy and material flow in industrial and ecological systems Nandan Ukidwe, Bhavik R. Bakshi; 13. Materials flow analysis and input-output analysis: a synthesis Shinichiro Nakamura; Part IV. Economic, Social Industrial, Eco Systems. 14. Early development of input-output analysis of energy and ecologic systems Bruce Hannon; 15. Exergoeconomics and exergoenvironmental analysis George Tsatsaronis; 16. Entopy, economics and policy Matthias Ruth; 17. Integration and segregation in a population -- a thermodynamicist's view Mueller Ingo; 18. Exergy use in ecosystems analysis: background and challenges Roberto Pastres, Brian D. Fath; 19. Thoughts on the application of thermodynamics to the development of sustainability science Timothy Gutowski, Dusan Sekulic, Bhavik R. Bakshi. "This book is a unique, multidisciplinary, effort to apply rigorous thermodynamics fundamentals, a disciplined scholarly approach, to problems of sustainability, energy, and resource uses. Applying thermodynamic thinking to problems of sustainable behavior is a significant advantage in bringing order to ill defined questions with a great variety of proposed solutions, some of which are more destructive than the original problem. The articles are pitched at a level accessible to advanced undergraduates and graduate students in courses on sustainability, sustainable engineering, industrial ecology, sustainable manufacturing, and green engineering. The timeliness of the topic, and the urgent need for solutions make this book attractive to general readers and specialist researchers as well. Top international figures from many disciplines, including engineers, ecologists, economists, physicists, chemists, policy experts and industrial ecologists among others make up the impressive list of contributors"-- Machine generated contents note: Introduction Bhavik R. Bakshi,Timothy Gutowski, Dusan Sekulic; Part I. Foundations: 1. Thermodynamics: generalized available energy and availability or exergy Elias Gyftopoulos; 2. Energy and exergy: does one need both concepts for a study of resources use Dusan Sekulic; 3. Accounting for resource use via thermodynamics Bhavik R. Bakshi, Anil Baral, Jorge L. Hau; Part II. Products & processes: 4. Material separation and recycling Timothy Gutowski; 5. Entropy based metric for transformational technologies development Dusan Sekulic; 6. Thermodynamic analysis of resources used in manufacturing processes Timothy Gutowski, Dusan Sekulic; 7. Case studies in energy use to realize ultra-high purities in semiconductor manufacturing Eric Williams, Nikhil Krishnan, Sarah Boyd; 8. Energy resources and use: the present (2008) situation, possible sustainable paths to the future and the thermodynamic perspective Noam Lior; Part III. Life cycle assessments & metrics: 9. Using thermodynamics and statistics to improve the quality of life cycle inventory data Bhavik R. Bakshi, Hangjoon Kim, Prem K. Goel; 10. Developing sustainable technology: metrics from thermodynamics Geert Van der Vorst, Jo Dewulf, Herman Van Langenhove; 11. Entropy production and resource consumption in life cycle assessments Stefan Gössling-Reisemann; 12. Exergy and material flow in industrial and ecological systems Nandan Ukidwe, Bhavik R. Bakshi; 13. Materials flow analysis and input-output analysis: a synthesis Shinichiro Nakamura; Part IV. Economic, Social Industrial, Eco Systems. 14. Early development of input-output analysis of energy and ecologic systems Bruce Hannon; 15. Exergoeconomics and exergoenvironmental analysis George Tsatsaronis; 16. Entopy, economics and policy Matthias Ruth; 17. Integration and segregation in a population -- a thermodynamicist's view Mueller Ingo; 18. Exergy use in ecosystems analysis: background and challenges Roberto Pastres, Brian D. Fath; 19. Thoughts on the application of thermodynamics to the development of sustainability science Timothy Gutowski, Dusan Sekulic, Bhavik R. Bakshi |
---|---|
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | XXII, 500 S graph. Darst 26 cm |
ISBN: | 0521884551 0-521-88455-1 9780521884556 978-0-521-88455-6 |