Subspace learning of neural networks

"Using real-life examples to illustrate the performance of learning algorithms and instructing readers how to apply them to practical applications, this work offers a comprehensive treatment of subspace learning algorithms for neural networks. The authors summarize a decade of high quality rese...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lv, Jian Cheng (VerfasserIn)
Weitere Verfasser: Yi, Zhang (VerfasserIn), Zhou, Jiliu (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Boca Raton, Fla. u.a. CRC Press 2011
Schriftenreihe:Automation and control engineering series
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:"Using real-life examples to illustrate the performance of learning algorithms and instructing readers how to apply them to practical applications, this work offers a comprehensive treatment of subspace learning algorithms for neural networks. The authors summarize a decade of high quality research offering a host of practical applications. They demonstrate ways to extend the use of algorithms to fields such as encryption communication, data mining, computer vision, and signal and image processing to name just a few. The brilliance of the work lies with how it coherently builds a theoretical understanding of the convergence behavior of subspace learning algorithms through a summary of chaotic behaviors"--
Beschreibung:Literaturverz. S. 213 - 228
Beschreibung:XXII, 233 S.
Ill., graph. Darst.
25 cm
ISBN:1439815356
1-4398-1535-6
9781439815359
978-1-4398-1535-9