Which power variation predicts volatility well?

We estimate MIDAS regressions with various (bi)power variations to predict future volatility measured via increments in quadratic variation. Instead of pre-determining the (bi)power variation we parameterize it and estimate the intra-daily return power transformation that optimally predicts future...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of empirical finance
1. Verfasser: Ghysels, Eric (VerfasserIn)
Weitere Verfasser: Sohn, Bumjean (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2009
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We estimate MIDAS regressions with various (bi)power variations to predict future volatility measured via increments in quadratic variation. Instead of pre-determining the (bi)power variation we parameterize it and estimate the intra-daily return power transformation that optimally predicts future increments in quadratic variation. We find that the longer the prediction horizon, the smaller the optimal power transformation.
Beschreibung:graph. Darst.
ISSN:0927-5398