Which power variation predicts volatility well?
We estimate MIDAS regressions with various (bi)power variations to predict future volatility measured via increments in quadratic variation. Instead of pre-determining the (bi)power variation we parameterize it and estimate the intra-daily return power transformation that optimally predicts future...
Gespeichert in:
Veröffentlicht in: | Journal of empirical finance |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
2009
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We estimate MIDAS regressions with various (bi)power variations to predict future volatility measured via increments in quadratic variation. Instead of pre-determining the (bi)power variation we parameterize it and estimate the intra-daily return power transformation that optimally predicts future increments in quadratic variation. We find that the longer the prediction horizon, the smaller the optimal power transformation. |
---|---|
Beschreibung: | graph. Darst. |
ISSN: | 0927-5398 |