Classification of higher dimensional algebraic varieties

This book focuses on recent advances in the classification of complex projective varieties. It is divided into two parts. The first part gives a detailed account of recent results in the minimal model program. In particular, it contains a complete proof of the theorems on the existence of flips, on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hacon, Christopher D. (VerfasserIn)
Weitere Verfasser: Kovács, Sándor J. (VerfasserIn), Kovács, Sándor (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Basel, Berlin u.a. Birkhäuser 2010
Schriftenreihe:Oberwolfach seminars 41
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This book focuses on recent advances in the classification of complex projective varieties. It is divided into two parts. The first part gives a detailed account of recent results in the minimal model program. In particular, it contains a complete proof of the theorems on the existence of flips, on the existence of minimal models for varieties of log general type and of the finite generation of the canonical ring. The second part is an introduction to the theory of moduli spaces. It includes topics such as representing and moduli functors, Hilbert schemes, the boundedness, local closedness and separatedness of moduli spaces and the boundedness for varieties of general type
The book is aimed at advanced graduate students and researchers in algebraic geometry --
Beschreibung:Literaturverz. S. [185] - 202
Beschreibung:X, 208 S.
Ill.
240 mm x 170 mm
ISBN:9783034602891
978-3-0346-0289-1