Improving the numerical performace of BLP static and dynamic discrete choice random coefficients demand estimation
"The widely-used estimator of Berry, Levinsohn and Pakes (1995) produces estimates of consumer preferences from a discrete-choice demand model with random coefficients, market-level demand shocks and endogenous prices. We derive numerical theory results characterizing the properties of the nes...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Cambridge, Mass.
2009
|
Schriftenreihe: | NBER working paper series
14991 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | "The widely-used estimator of Berry, Levinsohn and Pakes (1995) produces estimates of consumer preferences from a discrete-choice demand model with random coefficients, market-level demand shocks and endogenous prices. We derive numerical theory results characterizing the properties of the nested fixed point algorithm used to evaluate the objective function of BLP's estimator. We discuss problems with typical implementations, including cases that can lead to incorrect parameter estimates. As a solution, we recast estimation as a mathematical program with equilibrium constraints, which can be faster and which avoids the numerical issues associated with nested inner loops. The advantages are even more pronounced for forward-looking demand models where Bellman's equation must also be solved repeatedly. Several Monte Carlo and real-data experiments support our numerical concerns about the nested fixed point approach and the advantages of constrained optimization"--National Bureau of Economic Research web site |
---|---|
Beschreibung: | Parallel als Online-Ausg. ersch |
Beschreibung: | 51 S. |