Apportioning of risks via stochastic dominance

Consider a simple two-state risk with equal probabilities for the two states. In particular, assume that the random wealth variable Xi dominates Yi via ith-order stochastic dominance for i = M,N. We show that the 50-50 lottery [XN + YM, YN + XM] dominates the lottery [XN + XM, YN + YM] via (N + M)th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Eeckhoudt, Louis R. (VerfasserIn)
Weitere Verfasser: Schlesinger, Harris (VerfasserIn), Tsetlin, Ilia (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Munich Univ., Center for Economic Studies u.a. 2008
Schriftenreihe:CESifo working paper series Empirical and theoretical methods 2467
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider a simple two-state risk with equal probabilities for the two states. In particular, assume that the random wealth variable Xi dominates Yi via ith-order stochastic dominance for i = M,N. We show that the 50-50 lottery [XN + YM, YN + XM] dominates the lottery [XN + XM, YN + YM] via (N + M)th-order stochastic dominance. The basic idea is that a decision maker exhibiting (N + M)th-order stochastic dominance preference will allocate the state-contingent lotteries in such a way as not to group the two "bad" lotteries in the same state, where "bad" is defined via ith-order stochastic dominance. In this way, we can extend and generalize existing results about risk attitudes. This lottery preference includes behavior exhibiting higher order risk effects, such as precautionary effects and tempering effects.
Beschreibung:Literaturverz. S. 20 - 23
Beschreibung:23 S.