Apportioning of risks via stochastic dominance
Consider a simple two-state risk with equal probabilities for the two states. In particular, assume that the random wealth variable Xi dominates Yi via ith-order stochastic dominance for i = M,N. We show that the 50-50 lottery [XN + YM, YN + XM] dominates the lottery [XN + XM, YN + YM] via (N + M)th...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Munich
Univ., Center for Economic Studies u.a.
2008
|
Schriftenreihe: | CESifo working paper series Empirical and theoretical methods
2467 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider a simple two-state risk with equal probabilities for the two states. In particular, assume that the random wealth variable Xi dominates Yi via ith-order stochastic dominance for i = M,N. We show that the 50-50 lottery [XN + YM, YN + XM] dominates the lottery [XN + XM, YN + YM] via (N + M)th-order stochastic dominance. The basic idea is that a decision maker exhibiting (N + M)th-order stochastic dominance preference will allocate the state-contingent lotteries in such a way as not to group the two "bad" lotteries in the same state, where "bad" is defined via ith-order stochastic dominance. In this way, we can extend and generalize existing results about risk attitudes. This lottery preference includes behavior exhibiting higher order risk effects, such as precautionary effects and tempering effects. |
---|---|
Beschreibung: | Literaturverz. S. 20 - 23 |
Beschreibung: | 23 S. |