Wave trains, solitons and modulation theory in FPU chains
We present an overview of recent results concerning wave trains, solitons and their modulation in FPU chains. We take a thermodynamic perspective and use hyperbolic scaling of particle index and time in order to pass to a macroscopic continuum limit. While strong convergence yields the well-known p-...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Berlin
WIAS
2006
|
Schriftenreihe: | Preprint / Weierstraß-Institut für Angewandte Analysis und Stochastik
1132 |
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an overview of recent results concerning wave trains, solitons and their modulation in FPU chains. We take a thermodynamic perspective and use hyperbolic scaling of particle index and time in order to pass to a macroscopic continuum limit. While strong convergence yields the well-known p-system of mass and momentum conservation, we generally obtain a weak form of it in terms of Young measures. The modulation approach accounts for microscopic oscillations, which we interpret as temperature, causing convergence only in a weak, average sense. We present the arising Whitham modulation equations in a thermodynamic form, as well as analytic and numerical tools for the resolution of the modulated wave trains. As a prototype for the occurrence of temperature from oscillation-free initial data, we discuss various Riemann problems, and the arising dispersive shock fans, which replace Lax-shocks. We predict scaling and jump conditions assuming a generic soliton at the shock front. |
---|---|
Beschreibung: | Auch als elektronisches Dokument vorh |
Beschreibung: | 35 S. Ill., graph. Darst 30 cm |