Multiplicative invariant theory
Literaturverz. S. [161] - 171
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Berlin u.a.
Springer
2005
|
Schriftenreihe: | Encyclopaedia of mathematical sciences
135 Encyclopaedia of mathematical sciences / Invariant theory and algebraic transformation groups 6 |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis Verlagsangaben Inhaltstext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Literaturverz. S. [161] - 171 Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory. TOC:Introduction.- Notations and Conventions.- List of Abbreviations and Symbols.- 1 Groups Acting on Lattices.- 2 Permutation Lattices and Flasque Equivalence.- 3 Multiplicative Actions.- 4 Class Group.- 5 Picard Group.- 6 Multiplicative Invariants of Reflection Groups.- 7 Regularity.- 8 The Cohen-Macaulay Property.- 9 Multiplicative Invariant Fields.- 10 Problems.- References |
---|---|
Beschreibung: | XI, 177 S. graph. Darst. 24 cm |
ISBN: | 3540243232 3-540-24323-2 9783540243236 978-3-540-24323-6 |