Multiplicative invariant theory

Literaturverz. S. [161] - 171

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lorenz, Martin (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Berlin u.a. Springer 2005
Schriftenreihe:Encyclopaedia of mathematical sciences 135
Encyclopaedia of mathematical sciences / Invariant theory and algebraic transformation groups 6
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Verlagsangaben
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Literaturverz. S. [161] - 171
Multiplicative invariant theory, as a research area in its own right within the wider spectrum of invariant theory, is of relatively recent vintage. The present text offers a coherent account of the basic results achieved thus far.. Multiplicative invariant theory is intimately tied to integral representations of finite groups. Therefore, the field has a predominantly discrete, algebraic flavor. Geometry, specifically the theory of algebraic groups, enters through Weyl groups and their root lattices as well as via character lattices of algebraic tori. Throughout the text, numerous explicit examples of multiplicative invariant algebras and fields are presented, including the complete list of all multiplicative invariant algebras for lattices of rank 2. The book is intended for graduate and postgraduate students as well as researchers in integral representation theory, commutative algebra and, mostly, invariant theory. TOC:Introduction.- Notations and Conventions.- List of Abbreviations and Symbols.- 1 Groups Acting on Lattices.- 2 Permutation Lattices and Flasque Equivalence.- 3 Multiplicative Actions.- 4 Class Group.- 5 Picard Group.- 6 Multiplicative Invariants of Reflection Groups.- 7 Regularity.- 8 The Cohen-Macaulay Property.- 9 Multiplicative Invariant Fields.- 10 Problems.- References
Beschreibung:XI, 177 S.
graph. Darst.
24 cm
ISBN:3540243232
3-540-24323-2
9783540243236
978-3-540-24323-6