Geometric methods in algebra and number theory [... Conference "Geometric Methods in Algebra and Number Theory" in Miami, December 2003]

The transparency and power of geometric constructions has been a source of inspiration for generations of mathematicians; their applications to problems in algebra and number theory date back to Diophantus, if not earlier. Although more sophisticated and subtle constructions have replaced the Greek...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Körperschaft: Conference Geometric Methods in Algebra and Number Theory (BerichterstatterIn)
Weitere Verfasser: Bogomolov, Fedor A. (HerausgeberIn), Tschinkel, Yuri (BerichterstatterIn, HerausgeberIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Boston, Basel, Berlin Birkhäuser 2005
Schriftenreihe:Progress in mathematics 235
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Verlagsangaben
Cover
Inhaltstext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The transparency and power of geometric constructions has been a source of inspiration for generations of mathematicians; their applications to problems in algebra and number theory date back to Diophantus, if not earlier. Although more sophisticated and subtle constructions have replaced the Greek techniques of intersecting lines and conics, what remains unchallenged is the beauty and persuasion of pictures, communicated in words or drawings. This volume focuses on the following topics: * moduli spaces, Shimura varieties, D-modules * p-adic methods (motivic integration) * number theoretic applications (rational points) All papers are strongly influenced by geometric ideas and intuition. The collection as a whole gives a representative sample of modern results and problems in algebraic and arithmetic geometry, and the text can serve as an intense introduction for graduate students and others wishing to pursue research in these areas. Contributors include: V. Alexeev; L. Berger; J.-B. Bost; M. Brion; C.-L. Chai; T. Hausel; F. Loeser;P. Swinnerton-Dyer; L. Szpiro; and Y. Zarhin TOC:Preface * Bost: Extension groups in Arakelov geometry * Chai: Hecke orbits * Loeser: Ax-Kochen type theorems for p-adic integrals * Szpiro: Mahler measure for dynamical systems * Zarhin: Jacobians, endomorphisms and permutation groups * Alexeev: Toric Torelli map * Berger: De Rham representations and universal norms * Brion: The homogeneous coordinate ring of a spherical variety * Swinnerton-Dyer: Counting points on cubic surfaces * Hausel: Mirror symmetry, Langlands duality and representations of finite groups of Lie type
Beschreibung:Literaturangaben
Beschreibung:VIII, 362 S.
graph. Darst.
24 cm
ISBN:0817643494
0-8176-4349-4