Hierarchical neural networks for image interpretation
Zugl.: Berlin, Freie Univ., Diss., 2002
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Berlin, Heidelberg u.a.
Springer
2003
|
Schriftenreihe: | Lecture notes in computer science
2766 |
Schlagworte: | |
Online Zugang: | Einführung/Vorwort Inhaltsverzeichnis Cover Inhaltstext Publisher description |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Zugl.: Berlin, Freie Univ., Diss., 2002 References S. [209] - 220 Human performance in visual perception by far exceeds the performance of contemporary computer vision systems. While humans are able to perceive their environment almost instantly and reliably under a wide range of conditions, computer vision systems work well only under controlled conditions in limited domains. This booksets out to reproduce the robustness and speed of human perception by proposing a hierarchical neural network architecture for iterative image interpretation. The proposed architecture can be trained using unsupervised and supervised learning techniques. Applications of the proposed architecture are illustrated using small networks. Furthermore, several larger networks were trained to perform various nontrivial computer vision tasks |
---|---|
Beschreibung: | XII, 224 S. zahlr. Ill., graph. Darst |
ISBN: | 3540407227 3-540-40722-7 |