Web and big data Part 3

.- Spatial and Temporal Data. .- Temporalformer: A Temporal Decomposition Causal Transformer Network For Wind Power Forecasting. .- MSCFNet: A Multi-Scale Spatial and Channel Fusion Network for Geological Environment Remote Sensing Interpreting. .- TS-HCL: Hierarchical Layer-wise Contrastive Learnin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Körperschaft: APWeb-WAIM Joint International Conference on Web and Big Data (VerfasserIn)
Weitere Verfasser: Zhang, Wenjie (HerausgeberIn), Tung, Anthony (HerausgeberIn), Zheng, Zhonglong (HerausgeberIn), Yang, Zhengyi (HerausgeberIn), Wang, Xiaoyang (HerausgeberIn), Guo, Hongjie (HerausgeberIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Singapore Springer 2024
Schriftenreihe:Lecture notes in computer science 14963
Schlagworte:
Online Zugang:Cover
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:.- Spatial and Temporal Data. .- Temporalformer: A Temporal Decomposition Causal Transformer Network For Wind Power Forecasting. .- MSCFNet: A Multi-Scale Spatial and Channel Fusion Network for Geological Environment Remote Sensing Interpreting. .- TS-HCL: Hierarchical Layer-wise Contrastive Learning for Unsupervised Domain Adaptation on Time-Series. .- Dynamic-Static Fusion for Spatial-Temporal Anomaly Detection and Interpretation in Multivariate Time Series. .- MFCD:A deep learning method with fuzzy clustering for time series anomaly detection. .- Graph Neural Network. .- SBGMN: A Multi-View Sign Prediction Network for Bipartite Graphs. .- Product Anomaly Detection on Heterogeneous Graphs with Sparse Labels. .- Generic and Scalable Detection of Risky Transactions Using Density Flows: Applications to Financial Networks. .- Attributed Heterogeneous Graph Embedding with Meta-graph Attention. .- Automated Multi-scale Contrastive Learning with Sample-awareness for Graph Classification. .- CGAR: A Contrastive Graph Attention Residual Network for Enhanced Fake News Detection. .- GCH: Graph contrastive Learning with Higher-order Networks. .- LPRL-GCNN for Multi-Relation Link Prediction in Education. .- Multi-view Graph Neural Network for Fair Representation Learning. .- MERGE: Multi-View Relationship Graph Network for Event-Driven Stock Movement Prediction. .- Relation-Aware Heterogeneous Graph Neural Network for Fraud Detection. .- Graph Mining. .- Robust Local Community Search over Large Heterogeneous Information Networks. .- Community discovery in social network via dual-technique. .- CSGTM: Capsule Semantic Graph-Guided Latent Community Topics Discovery. .- Efficient ( , beta, Gamma)-Core Search in Bipartite Graphs Based on Bi-triangles. .- Identifying Rank-happiness Maximizing Sets under Group Fairness Constraints. .- Reachability-Aware Fair Influence Maximization. .- Towards Efficient Heuristic Graph Edge Coloring. .- Tree and Graph based Two-Stages Routing for Approximate Nearest Neighbor Search. .- Unbiasedly Estimate Temporal Katz Centrality and Identify Top-K Vertices in Streaming Graph. .- Database System and Query Optimization. .- Gar: Natural Language to SQL Translation with Efficient Generate-and-Rank. .- A Composable Architecture for Cloud Transactional DBMS. .- Computing Minimum Subset Repair On Incomplete Data. .- Flutist: Parallelizing Transaction Processing for LSM-tree-based Relational Database. .- Poplar: Partially-Ordered Parallel Logging for Lower Isolation Levels. .- Table Embedding Models Based on Contrastive Learning for Improved Cardinality Estimation.
The five-volume set LNCS 14961, 14962, 14963, 14964 and 14965 constitutes the refereed proceedings of the 8th International Joint Conference on Web and Big Data, APWeb-WAIM 2024, held in Jinhua, China, during August 30-September 1, 2024. The 171 full papers presented in these proceedings were carefully reviewed and selected from 558 submissions. The papers are organized in the following topical sections: Part I: Natural language processing, Generative AI and LLM, Computer Vision and Recommender System. Part II: Recommender System, Knowledge Graph and Spatial and Temporal Data. Part III: Spatial and Temporal Data, Graph Neural Network, Graph Mining and Database System and Query Optimization. Part IV: Database System and Query Optimization, Federated and Privacy-Preserving Learning, Network, Blockchain and Edge computing, Anomaly Detection and Security Part V: Anomaly Detection and Security, Information Retrieval, Machine Learning, Demonstration Paper and Industry Paper
Beschreibung:Literaturangaben
Beschreibung:xvii, 515 Seiten
Diagramme
ISBN:9789819772377
978-981-97-7237-7