Mixed Hodge structures on Alexander modules

"Motivated by the limit mixed Hodge structure on the Milnor fiber of a hypersurface singularity germ, we construct a natural mixed Hodge structure on the torsion part of the Alexander modules of a smooth connected complex algebraic variety. More precisely, let U be a smooth connected complex al...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Elduque, Eva (VerfasserIn)
Weitere Verfasser: Geske, Christian (VerfasserIn), Herradón Cueto, Moisés (VerfasserIn), Maxim, Laurenţiu G. (VerfasserIn), Wang, Botong (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Providence American Mathematical Society April 2024
Schriftenreihe:Memoirs of the American Mathematical Society volume 296, number 1479 (April 2024)
Schlagworte:
Online Zugang:zbMATH
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:"Motivated by the limit mixed Hodge structure on the Milnor fiber of a hypersurface singularity germ, we construct a natural mixed Hodge structure on the torsion part of the Alexander modules of a smooth connected complex algebraic variety. More precisely, let U be a smooth connected complex algebraic variety and let f : U C be an algebraic map inducing an epimorphism in fundamental groups. The pullback of the universal cover of C by f gives rise to an infinite cyclic cover Uf of U. The action of the deck group Z on Uf induces a Q[t1]- module structure on H(Uf ;Q). We show that the torsion parts A(Uf ;Q) of the Alexander modules H(Uf ;Q) carry canonical Q-mixed Hodge structures. We also prove that the covering map Uf U induces a mixed Hodge structure morphism on the torsion parts of the Alexander modules. As applications, we investigate the semisimplicity of A(Uf ;Q), as well as possible weights of the constructed mixed Hodge structures. Finally, in the case when f : U C is proper, we prove the semisimplicity and purity of A(Uf ;Q), and we compare our mixed Hodge structure on A(Uf ;Q) with the limit mixed Hodge structure on the generic fiber of f"--
Beschreibung:"April 2024, volume 296, number 1479 (fifth of 7 numbers)"
Literaturverzeichnis: Seite 109-111
Description based on publisher supplied metadata and other sources
Beschreibung:viii, 114 Seiten
ISBN:9781470469672
978-1-4704-6967-2