Dehn fillings of knot manifolds containing essential twice-punctured tori

Summary: We show that if a hyperbolic knot manifold M contains an essential twice-punctured torus F with boundary slope β and admits a filling with slope α producing a Seifert fibred space, then the distance between the slopes α and β is less than or equal to 5 unless M is the exterior of the figure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Boyer, Steven (VerfasserIn)
Weitere Verfasser: Gordon, Cameron (VerfasserIn), Zhang, Xingru (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Providence, RI American Mathematical Society March 2024
Schriftenreihe:Memoirs of the American Mathematical Society volume 295, number 1469 (March 2024)
Schlagworte:
Online Zugang:Inhaltsverzeichnis
zbMATH
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary: We show that if a hyperbolic knot manifold M contains an essential twice-punctured torus F with boundary slope β and admits a filling with slope α producing a Seifert fibred space, then the distance between the slopes α and β is less than or equal to 5 unless M is the exterior of the figure eight knot. The result is sharp; the bound of 5 can be realized on infinitely many hyperbolic knot manifolds. We also determine distance bounds in the case that the fundamental group of the α-filling contains no non-abelian free group. The proofs are divided into the four cases F is a semi-fibre, F is a fibre, F is non-separating but not a fibre, and F is separating but not a semi-fibre, and we obtain refined bounds in each case.
Beschreibung:Description based on publisher supplied metadata and other sources
"Mach 2024, volume 295, number 1469 (first of 6 numbers)"
Beschreibung:v, 123 Seiten
ISBN:9781470468705
978-1-4704-6870-5