Machine learning in manufacturing quality 4.0 and the zero defects vision

1. Introduction2. The technologies3. The data4. Binary classification5. Machine learning6. Feature engineering7. Classifier development8. Learning quality control9. Case studies; structured and unstructured data10. Conclusion and call to action

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Escobar, Carlos A. (VerfasserIn)
Weitere Verfasser: Morales-Menendez, Ruben (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Amsterdam, London, Cambridge, MA Elsevier 2024
Schlagworte:
Online Zugang:Cover
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1. Introduction2. The technologies3. The data4. Binary classification5. Machine learning6. Feature engineering7. Classifier development8. Learning quality control9. Case studies; structured and unstructured data10. Conclusion and call to action
Machine Learning in Manufacturing: Quality 4.0 and the Zero Defects Vision reviews process monitoring based on machine learning algorithms and the technologies of the fourth industrial revolution and proposes Learning Quality Control (LQC), the evolution of Statistical Quality Control (SQC). This book identifies 10 big data issues in manufacturing and addresses them using an ad-hoc, 5-step problem-solving strategy that increases the likelihood of successfully deploying this Quality 4.0 initiative. With two case studies using structured and unstructured data, this book explains how to successfully deploy AI in manufacturing and how to move quality standards forward by developing virtually defect-free processes. This book enables engineers to identify Quality 4.0 applications and manufacturing companies to successfully implement Quality 4.0 practices
Beschreibung:Literaturverzeichnis: Seite 211-224
Beschreibung:x, 236 Seiten
Illustrationen, Diagramme
ISBN:9780323990295
978-0-323-99029-5