Toward robots that reason: logic, probability & causal laws

Preface.- Acknowledgments.- Introduction.- Representation Matters.- From Predicate Calculus to the Situation Calculus.- Knowledge.- Probabilistic Beliefs.- Continuous Distributions.- Localization.- Regression & Progression.- Programs.- A Modal Reconstruction.- Conclusions.

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Belle, Vaishak (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham Springer 2023
Schriftenreihe:Synthesis lectures on artificial intelligence and machine learning
Schlagworte:
Online Zugang:Cover
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Preface.- Acknowledgments.- Introduction.- Representation Matters.- From Predicate Calculus to the Situation Calculus.- Knowledge.- Probabilistic Beliefs.- Continuous Distributions.- Localization.- Regression & Progression.- Programs.- A Modal Reconstruction.- Conclusions.
This book discusses the two fundamental elements that underline the science and design of artificial intelligence (AI) systems: the learning and acquisition of knowledge from observational data, and the reasoning of that knowledge together with whatever information is available about the application at hand. It then presents a mathematical treatment of the core issues that arise when unifying first-order logic and probability, especially in the presence of dynamics, including physical actions, sensing actions and their effects. A model for expressing causal laws describing dynamics is also considered, along with computational ideas for reasoning with such laws over probabilistic logical knowledge
Beschreibung:Literaturverzeichnis: Seite 181-190
Beschreibung:xiii, 190 Seiten
Diagramme
ISBN:9783031210020
978-3-031-21002-0
9783031210051
978-3-031-21005-1