Remote sensing intelligent interpretation for geology from perspective of geological exploration
Chapter 1. Geological remote sensing: An overview.- Chapter 2. Remote sensing interpretation signs of geology.- Chapter 3. Geological remote sensing dataset construction for multi-level tasks.- Chapter 4. Lithology pixel classification using deep convolutional network and remote sensing.- Chapter 5...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Singapore
Springer
2024
|
Schlagworte: |
COMPUTERS / Artificial Intelligence
> COMPUTERS / Data Processing / General
> Geographische Informationssysteme (GIS) und Fernerkundung
> Geography
> Geologie und die Lithosphäre
> Geology & the lithosphere
> Information technology: general issues
> Machine learning
> Maschinelles Lernen
> Mineralogy & gems
> Petrologie (Gesteinskunde), Petrografie und Mineralogie
> SCIENCE / Earth Sciences / Geography
> SCIENCE / Earth Sciences / Geology
> SCIENCE / Earth Sciences / Mineralogy
> Geologie
> Fernerkundung
> Deep learning
|
Online Zugang: | Cover Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chapter 1. Geological remote sensing: An overview.- Chapter 2. Remote sensing interpretation signs of geology.- Chapter 3. Geological remote sensing dataset construction for multi-level tasks.- Chapter 4. Lithology pixel classification using deep convolutional network and remote sensing.- Chapter 5 Lithology scene classification using deep learning and remote sensing.- Chapter 6. Lithology semantic segmentation methods using deep learning and remote sensing.- Chapter 7. Lithology intelligent classification using prior knowledge-based and remote sensing.- Chapter 8. Lithology intelligent classification using transfer learning and remote sensing.- Chapter 9. Remote sensing intelligent identification of fault tectonics.- Chapter 10. Mineral abundance inversion based on sparse unmixing theory and hyperspectral remote sensing.- Chapter 11. Concluding remarks. This book presents the theories and methods for geology intelligent interpretation based on deep learning and remote sensing technologies. The main research subjects of this book include lithology and mineral abundance. This book focuses on the following five aspects: 1. Construction of geology remote sensing datasets from multi-level (pixel-level, scene-level, semantic segmentation-level, prior knowledge-assisted, transfer learning dataset), which are the basis of geology interpretation based on deep learning. 2. Research on lithology scene classification based on deep learning, prior knowledge, and remote sensing. 3. Research on lithology semantic segmentation based on deep learning and remote sensing. 4. Research on lithology classification based on transfer learning and remote sensing. 5. Research on inversion of mineral abundance based on the sparse unmixing theory and hyperspectral remote sensing. The book is intended for undergraduate and graduate students who are interested in geology, remote sensing, and artificial intelligence. It is also used as a reference book for scientific and technological personnel of geological exploration |
---|---|
Beschreibung: | Literaturangaben |
Beschreibung: | xi, 235 Seiten Illustrationen, Diagramme, Karten |
ISBN: | 9789819989966 978-981-99-8996-6 |