Multiscale geographically weighted regression theory and practice

Introduction to local modeling -- MGWR : the essentials -- Inference -- Spatial scale and local modeling -- Software for MGWR -- Caveat emptor! -- A local analysis of voting behavior : the 2020 US presidential election -- MGWR and other models incorporating spatial contextual effects.

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Fotheringham, Alexander Stewart (VerfasserIn)
Weitere Verfasser: Oshan, Taylor M. (VerfasserIn), Li, Ziqi (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Boca Raton, London, New York CRC Press 2024
Ausgabe:First edition
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction to local modeling -- MGWR : the essentials -- Inference -- Spatial scale and local modeling -- Software for MGWR -- Caveat emptor! -- A local analysis of voting behavior : the 2020 US presidential election -- MGWR and other models incorporating spatial contextual effects.
"Multiscale Geographically Weighted Regression (MGWR) is an important method that is used across many disciplines for exploring spatial heterogeneity and modeling local spatial processes. This book serves as definitive guide to local regression modeling and the analysis of spatially varying processes, a very cutting-edge, hands-on, and innovative resource. The authors start with the basic ideas and fundamentals of local spatial modeling followed by a detailed discussion of scale issues and statistical inference related to MGWR. A comprehensive guide to free, user-friendly, software for MGWR is also provided, as well as an analysis of the 2020 US Presidential election"--
Beschreibung:Literaturangaben und Index
Beschreibung:xvii, 176 Seiten
Diagramme, Karten
ISBN:9781032564227
978-1-032-56422-7
9781032564234
978-1-032-56423-4