Bayesian nonparametric methods for causal inference and missing data
"Bayesian nonparametric (BNP) methods can be used to flexibly model joint or conditional distributions, as well as functional relationships. These methods, along with causal and/or missingness assumptions, can be used with the g-formula to infer causal effects"--
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Boca Raton, London, New York
CRC Press
2024
|
Ausgabe: | First edition |
Schriftenreihe: | Monographs on statistics and applied probability
173 |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | "Bayesian nonparametric (BNP) methods can be used to flexibly model joint or conditional distributions, as well as functional relationships. These methods, along with causal and/or missingness assumptions, can be used with the g-formula to infer causal effects"-- |
---|---|
Beschreibung: | Literaturverzeichnis: Seite 229-241 |
Beschreibung: | xiv, 248 Seiten Illustrationen, Diagramme |
ISBN: | 9780367341008 978-0-367-34100-8 9781032456942 978-1-032-45694-2 |