Bayesian nonparametric methods for causal inference and missing data

"Bayesian nonparametric (BNP) methods can be used to flexibly model joint or conditional distributions, as well as functional relationships. These methods, along with causal and/or missingness assumptions, can be used with the g-formula to infer causal effects"--

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Daniels, Michael J. (VerfasserIn)
Weitere Verfasser: Linero, Antonio (VerfasserIn), Roy, Jason (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Boca Raton, London, New York CRC Press 2024
Ausgabe:First edition
Schriftenreihe:Monographs on statistics and applied probability 173
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:"Bayesian nonparametric (BNP) methods can be used to flexibly model joint or conditional distributions, as well as functional relationships. These methods, along with causal and/or missingness assumptions, can be used with the g-formula to infer causal effects"--
Beschreibung:Literaturverzeichnis: Seite 229-241
Beschreibung:xiv, 248 Seiten
Illustrationen, Diagramme
ISBN:9780367341008
978-0-367-34100-8
9781032456942
978-1-032-45694-2