Machine learning algorithms using Scikit and TensorFlow environments
Ensemble learning and random forest / Belsini GladShiya.V, Sharmila K K -- Predicting depression from social media users by using lexicons and machine learning algorithms / Santhi Selvaraj, Selva Nidhyananthan S -- Recurrent neural network with TensorFlow / Kavita Srivastava -- A deep understanding...
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Hershey, PA
IGI Global
2024
|
Schriftenreihe: | Advances in system analysis, software engineering, and high performance computing (ASASEHPC) book series
|
Schlagworte: |
TensorFlow
> Machine learning
> Neural networks (Computer science)
> Computer algorithms
> Algorithmen und Datenstrukturen
> Algorithms & data structures
> COM094000
> COMPUTERS / Programming / Algorithms
> COMPUTERS / Programming / Software Development
> Maschinelles Lernen
> Software Engineering
> Neuronales Netz
|
Online Zugang: | Inhaltsverzeichnis Cover |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ensemble learning and random forest / Belsini GladShiya.V, Sharmila K K -- Predicting depression from social media users by using lexicons and machine learning algorithms / Santhi Selvaraj, Selva Nidhyananthan S -- Recurrent neural network with TensorFlow / Kavita Srivastava -- A deep understanding of long short-term memory for solving vanishing error problem : LSTM - VGP / Aswathy Ravikumar, Harini S -- Understanding convolutional neural network with TensorFlow : TensorFlow CNN / Aswathy Ravikumar, Harini Sriraman. "Machine Learning Algorithms Using Scikit and TensorFlow Environments assists researchers in learning and implementing these critical algorithms. Covering key topics such as classification, artificial neural networks, prediction, random forest, and regression analysis, this premier reference source is ideal for industry professionals, computer scientists, researchers, academicians, scholars, practitioners, instructors, and students"-- |
---|---|
Beschreibung: | Literaturverzeichnis: Seite 408-443 |
Beschreibung: | xx, 453 Seiten Illustrationen, Diagramme, Pläne |
ISBN: | 9781668485316 978-1-6684-8531-6 9781668485323 978-1-6684-8532-3 |