Concentration and Gaussian approximation for randomized sums

Publisher’s description: This book describes extensions of Sudakov’s classical result on the concentration of measure phenomenon for weighted sums of dependent random variables. The central topics of the book are weighted sums of random variables and the concentration of their distributions around G...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bobkov, Sergej G. (VerfasserIn)
Weitere Verfasser: Chistyakov, Gennadiy (VerfasserIn), Götze, Friedrich (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham Springer 2023
Schriftenreihe:Probability theory and stochastic modelling volume 104
Schlagworte:
Online Zugang:Inhaltsverzeichnis
zbMATH
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Publisher’s description: This book describes extensions of Sudakov’s classical result on the concentration of measure phenomenon for weighted sums of dependent random variables. The central topics of the book are weighted sums of random variables and the concentration of their distributions around Gaussian laws. The analysis takes place within the broader context of concentration of measure for functions on high-dimensional spheres. Starting from the usual concentration of Lipschitz functions around their limiting mean, the authors proceed to derive concentration around limiting affine or polynomial functions, aiming towards a theory of higher order concentration based on functional inequalities of log-Sobolev and Poincaré type. These results make it possible to derive concentration of higher order for weighted sums of classes of dependent variables. While the first part of the book discusses the basic notions and results from probability and analysis which are needed for the remainder of the book, the latter parts provide a thorough exposition of concentration, analysis on the sphere, higher order normal approximation and classes of weighted sums of dependent random variables with and without symmetries.
Beschreibung:Literaturverzeichnis: Seite 419-426
Beschreibung:xvii, 434 Seiten
ISBN:9783031311482
978-3-031-31148-2