Trustworthy federated learning First International Workshop, FL 2022, held in conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022 : revised selected papers

Adaptive Expert Models for Personalization in Federated Learning.- Federated Learning with GAN-based Data Synthesis for Non-iid Clients.- Practical and Secure Federated Recommendation with Personalized Mask.- A General Theory for Client Sampling in Federated Learning.- Decentralized adaptive cluster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Körperschaft: International Workshop on Trustworthy Federated Learning (VerfasserIn)
Weitere Verfasser: Faltings, Boi (HerausgeberIn), Fan, Lixin (HerausgeberIn), Goebel, Randy (HerausgeberIn), Xiong, Zehui (HerausgeberIn), Yu, Han (HerausgeberIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham Springer 2023
Schriftenreihe:Lecture notes in computer science 13448
Schlagworte:
Online Zugang:Cover
Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Adaptive Expert Models for Personalization in Federated Learning.- Federated Learning with GAN-based Data Synthesis for Non-iid Clients.- Practical and Secure Federated Recommendation with Personalized Mask.- A General Theory for Client Sampling in Federated Learning.- Decentralized adaptive clustering of deep nets is beneficial for client collaboration.- Sketch to Skip and Select: Communication Efficient Federated Learning using Locality Sensitive Hashing.- Fast Server Learning Rate Tuning for Coded Federated Dropout.- FedAUXfdp: Differentially Private One-Shot Federated Distillation.- Secure forward aggregation for vertical federated neural network.- Two-phased Federated Learning with Clustering and Personalization for Natural Gas Load Forecasting.- Privacy-Preserving Federated Cross-Domain Social Recommendation.
This book constitutes the refereed proceedings of the First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, held in Vienna, Austria, during July 23-25, 2022. The 11 full papers presented in this book were carefully reviewed and selected from 12 submissions. They are organized in three topical sections: answer set programming; adaptive expert models for personalization in federated learning and privacy-preserving federated cross-domain social recommendation
Beschreibung:Literaturangaben
Beschreibung:x, 158 Seiten
Diagramme
ISBN:9783031289958
978-3-031-28995-8