Trustworthy federated learning First International Workshop, FL 2022, held in conjunction with IJCAI 2022, Vienna, Austria, July 23, 2022 : revised selected papers
Adaptive Expert Models for Personalization in Federated Learning.- Federated Learning with GAN-based Data Synthesis for Non-iid Clients.- Practical and Secure Federated Recommendation with Personalized Mask.- A General Theory for Client Sampling in Federated Learning.- Decentralized adaptive cluster...
Gespeichert in:
Körperschaft: | |
---|---|
Weitere Verfasser: | , , , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Cham
Springer
2023
|
Schriftenreihe: | Lecture notes in computer science
13448 |
Schlagworte: | |
Online Zugang: | Cover Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Adaptive Expert Models for Personalization in Federated Learning.- Federated Learning with GAN-based Data Synthesis for Non-iid Clients.- Practical and Secure Federated Recommendation with Personalized Mask.- A General Theory for Client Sampling in Federated Learning.- Decentralized adaptive clustering of deep nets is beneficial for client collaboration.- Sketch to Skip and Select: Communication Efficient Federated Learning using Locality Sensitive Hashing.- Fast Server Learning Rate Tuning for Coded Federated Dropout.- FedAUXfdp: Differentially Private One-Shot Federated Distillation.- Secure forward aggregation for vertical federated neural network.- Two-phased Federated Learning with Clustering and Personalization for Natural Gas Load Forecasting.- Privacy-Preserving Federated Cross-Domain Social Recommendation. This book constitutes the refereed proceedings of the First International Workshop, FL 2022, Held in Conjunction with IJCAI 2022, held in Vienna, Austria, during July 23-25, 2022. The 11 full papers presented in this book were carefully reviewed and selected from 12 submissions. They are organized in three topical sections: answer set programming; adaptive expert models for personalization in federated learning and privacy-preserving federated cross-domain social recommendation |
---|---|
Beschreibung: | Literaturangaben |
Beschreibung: | x, 158 Seiten Diagramme |
ISBN: | 9783031289958 978-3-031-28995-8 |