Cohomology of the moduli space of cubic threefolds and ist smooth models
We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–To...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Providence, RI
American Mathematical Society
2023
|
Schriftenreihe: | Memoirs of the American Mathematical Society
volume 282, number 1395 (February 2023) |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis zbMATH |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute and compare the (intersection) cohomology of various natural geometric compactifications of the moduli space of cubic threefolds: the GIT compactification and its Kirwan blowup, as well as the Baily–Borel and toroidal compactifications of the ball quotient model, due to Allcock–Carlson–Toledo. Our starting point is Kirwan’s method. We then follow by investigating the behavior of the cohomology under the birational maps relating the various models, using the decomposition theorem in different ways, and via a detailed study of the boundary of the ball quotient model. As an easy illustration of our methods, the simpler case of the moduli space of cubic surfaces is discussed in an appendix. |
---|---|
Beschreibung: | Literaturangaben "Febrary 2023, volume 282, number 1395 (fourth of 6 numbers)" |
Beschreibung: | v, 100 Seiten |
ISBN: | 9781470460204 978-1-4704-6020-4 |