Planar algebras in braided tensor categories
We generalize Jones’ planar algebras by internalising the notion to a pivotal braided tensor category C. To formulate the notion, the planar tangles are now equipped with additional ‘anchor lines’ which connect the inner circles to the outer circle. We call the resulting notion an anchored planar al...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Providence, RI
American Mathematical Society
2023
|
Schriftenreihe: | Memoirs of the American Mathematical Society
volume 282, number 1392 (February 2023) |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis zbMATH |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We generalize Jones’ planar algebras by internalising the notion to a pivotal braided tensor category C. To formulate the notion, the planar tangles are now equipped with additional ‘anchor lines’ which connect the inner circles to the outer circle. We call the resulting notion an anchored planar algebra. If we restrict to the case when C is the category of vector spaces, then we recover the usual notion of a planar algebra. Building on our previous work on categorified traces, we prove that there is an equivalence of categories between anchored planar algebras in C and pivotal module tensor categories over C equipped with a chosen self-dual generator. Even in the case of usual planar algebras, the precise formulation of this theorem, as an equivalence of categories, has not appeared in the literature. Using our theorem, we describe many examples of anchored planar algebras. |
---|---|
Beschreibung: | Literaturangaben "Febrary 2023, volume 282, number 1392 (first of 6 numbers)" |
Beschreibung: | v, 100 Seiten Illustrationen |
ISBN: | 9781470455408 978-1-4704-5540-8 |