Graph-powered machine learning
1. Machine learning and graphs : an introduction -- 2. Graph data engineering -- 3. Graphs in machine learning applications -- 4. Content-based recommendations -- 5. Collaborative filtering -- 6. Session-based recommendations -- 7. Context-aware and hybrid recommendations -- 8. Basic approaches to g...
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Shelter Island
Manning
2021
|
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1. Machine learning and graphs : an introduction -- 2. Graph data engineering -- 3. Graphs in machine learning applications -- 4. Content-based recommendations -- 5. Collaborative filtering -- 6. Session-based recommendations -- 7. Context-aware and hybrid recommendations -- 8. Basic approaches to graph-powered fraud detection -- 9. Proximity-based algorithms -- 10. Social metwork analysis against fraud -- 11. Graph-based natural language processing -- 12. Knowledge graphs. Identifying relationships is the foundation of machine learning. By recognizing and analyzing the connections in your data, graph-centric algorithms like K-nearest neighbor or PageRank radically improve the effectiveness of ML applications. Graph-based machine learning techniques offer a powerful new perspective for machine learning in social networking, fraud detection, natural language processing, and recommendiation systems. "Graph-powered machine learning" teaches you how to exploit the natural relationships in structured and unstructured datasets using graph-oriented machine learning algorithms and tools. In this authoritative book, you'll master the architectures and design practices of graphs, and avoid common pitfalls. Author Alessandro Negro explores examples from real-world applications that connect GraphML concepts to real world tasks |
---|---|
Beschreibung: | Literaturangaben |
Beschreibung: | xxiv, 467 Seiten Illustrationen, Diagramme 24 cm |
ISBN: | 9781617295645 978-1-61729-564-5 1617295647 1-61729-564-7 |