Homotopy theory and arithmetic geometry – motivic and diophantine aspects LMS-CMI Research School, London, July 2018

- 1. Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects: an Introduction -- 2. An Introduction to A1-Enumerative Geometry -- 3. Cohomological Methods in Intersection Theory -- 4. Étale Homotopy and Obstructions to Rational Points -- 5. A1-Homotopy Theory and Contractible Varie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Körperschaften: Clay Mathematics Institute (VeranstalterIn), London Mathematical Society (VeranstalterIn), Springer International Publishing (Verlag)
Weitere Verfasser: Neumann, Frank (HerausgeberIn), Pál, Ambrus (HerausgeberIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham Springer 2021
Schriftenreihe:Lecture notes in mathematics volume 2292
Schlagworte:
Online Zugang:Inhaltsverzeichnis
zbMATH
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:- 1. Homotopy Theory and Arithmetic Geometry – Motivic and Diophantine Aspects: an Introduction -- 2. An Introduction to A1-Enumerative Geometry -- 3. Cohomological Methods in Intersection Theory -- 4. Étale Homotopy and Obstructions to Rational Points -- 5. A1-Homotopy Theory and Contractible Varieties: a Survey -- Index.
This book provides an introduction to state-of-the-art applications of homotopy theory to arithmetic geometry. The contributions to this volume are based on original lectures by leading researchers at the LMS-CMI Research School on ‘Homotopy Theory and Arithmetic Geometry - Motivic and Diophantine Aspects’ and the Nelder Fellow Lecturer Series, which both took place at Imperial College London in the summer of 2018. The contribution by Brazelton, based on the lectures by Wickelgren, provides an introduction to arithmetic enumerative geometry, the notes of Cisinski present motivic sheaves and new cohomological methods for intersection theory, and Schlank’s contribution gives an overview of the use of étale homotopy theory for obstructions to the existence of rational points on algebraic varieties. Finally, the article by Asok and Østvær, based in part on the Nelder Fellow lecture series by Østvær, gives a survey of the interplay between motivic homotopy theory and affine algebraic geometry, with a focus on contractible algebraic varieties. Now a major trend in arithmetic geometry, this volume offers a detailed guide to the fascinating circle of recent applications of homotopy theory to number theory. It will be invaluable to research students entering the field, as well as postdoctoral and more established researchers.
Beschreibung:Literaturangaben
Beschreibung:ix, 215 Seiten
Diagramme
ISBN:9783030789763
978-3-030-78976-3