Advances in Learning Automata and Intelligent Optimization

An Introduction to learning automata and optimization -- Learning automaton and its variants for optimization: a bibliometric analysis -- Cellular automata, learning automata, and cellular learning automata for optimization -- Learning automata for behavior control in evolutionary computation -- A m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Kazemi Kordestani, Javidan (HerausgeberIn), Mirsaleh, Mehdi Razapoor (HerausgeberIn), Rezvanian, Alireza (HerausgeberIn), Meybodi, Mohammad Reza (HerausgeberIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham Springer 2021
Schriftenreihe:Intelligent Systems Reference Library volume 208
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An Introduction to learning automata and optimization -- Learning automaton and its variants for optimization: a bibliometric analysis -- Cellular automata, learning automata, and cellular learning automata for optimization -- Learning automata for behavior control in evolutionary computation -- A memetic model based on fixed structure learning automata for solving NP-Hard problems.
This book is devoted to the leading research in applying learning automaton (LA) and heuristics for solving benchmark and real-world optimization problems. The ever-increasing application of the LA as a promising reinforcement learning technique in artificial intelligence makes it necessary to provide scholars, scientists, and engineers with a practical discussion on LA solutions for optimization. The book starts with a brief introduction to LA models for optimization. Afterward, the research areas related to LA and optimization are addressed as bibliometric network analysis. Then, LA's application in behavior control in evolutionary computation, and memetic models of object migration automata and cellular learning automata for solving NP hard problems are considered. Next, an overview of multi-population methods for DOPs, LA's application in dynamic optimization problems (DOPs), and the function evaluation management in evolutionary multi-population for DOPs are discussed. Highlighted benefits • Presents the latest advances in learning automata-based optimization approaches. • Addresses the memetic models of learning automata for solving NP-hard problems. • Discusses the application of learning automata for behavior control in evolutionary computation in detail. • Gives the fundamental principles and analyses of the different concepts associated with multi-population methods for dynamic optimization problems. .
Beschreibung:XX, 340 Seiten
Illustrationen, Diagramme
ISBN:9783030762902
978-3-030-76290-2
9783030762926
978-3-030-76292-6
9783030762933
978-3-030-76293-3