The spread of almost simple classical groups

This monograph studies generating sets of almost simple classical groups, by bounding the spread of these groups. Guralnick and Kantor resolved a 1962 question of Steinberg by proving that in a finite simple group, every nontrivial element belongs to a generating pair. Groups with this property are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Harper, Scott (VerfasserIn)
Körperschaft: Springer Nature Switzerland AG (Verlag)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham Springer Nature 2021
Schriftenreihe:Lecture notes in mathematics volume 2286
Schlagworte:
Online Zugang:Inhaltsverzeichnis
zbMATH
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This monograph studies generating sets of almost simple classical groups, by bounding the spread of these groups. Guralnick and Kantor resolved a 1962 question of Steinberg by proving that in a finite simple group, every nontrivial element belongs to a generating pair. Groups with this property are said to be 3/2-generated. Breuer, Guralnick and Kantor conjectured that a finite group is 3/2-generated if and only if every proper quotient is cyclic. We prove a strong version of this conjecture for almost simple classical groups, by bounding the spread of these groups. This involves analysing the automorphisms, fixed point ratios and subgroup structure of almost simple classical groups, so the first half of this monograph is dedicated to these general topics. In particular, we give a general exposition of Shintani descent. This monograph will interest researchers in group generation, but the opening chapters also serve as a general introduction to the almost simple classical groups. .
Beschreibung:Literaturverzeichnis: Seite 149-151
Beschreibung:viii, 151 Seiten
Diagramme
ISBN:9783030740993
978-3-030-74099-3