Ensemble size classification in Colombian Andean string music recordings

Reliable methods for automatic retrieval of semantic information from large digital music archives can play a critical role in musicological research and musical heritage preservation. With the advancement of machine learning techniques, new possibilities for information retrieval in scenarios where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CMMR (14. : 2019 : Marseille) Perception, representations, image, sound, music
1. Verfasser: Grollmisch, Sascha (VerfasserIn)
Weitere Verfasser: Cano, Estefanía (VerfasserIn), Mora Ángel, Fernando (VerfasserIn), López Gil, Gustavo (VerfasserIn), Ángel, Fernando Mora (VerfasserIn), Gil, Gustavo López (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: 2021
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Reliable methods for automatic retrieval of semantic information from large digital music archives can play a critical role in musicological research and musical heritage preservation. With the advancement of machine learning techniques, new possibilities for information retrieval in scenarios where ground-truth data is scarce are now available. This work investigates the problem of ensemble size classification in music recordings. For this purpose, a new dataset of Colombian Andean string music was compiled and annotated by musicological experts. Different neural network architectures, as well as pre-processing steps and data augmentation techniques were systematically evaluated and optimized. The best deep neural network architecture achieved 81.5% file-wise mean class accuracy using only feed forward layers with linear magnitude spectrograms as input representation. This model will serve as a baseline for future research on ensemble size classification.
ISBN:9783030702090