Resolvent, heat kernel, and torsion under degeneration to fibered cusps

Fibered cusp surgery metrics -- Pseudodifferential operator calculi -- Resolvent construction -- Projection onto the eigenspace of small eigenvalues -- Surgery heat space -- Solving the heat equation -- The R-torsion on manifolds with boundary -- The intersection R-torsion of Dar and L2-cohomology -...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Albin, Pierre (VerfasserIn)
Weitere Verfasser: Rochon, Frédéric (VerfasserIn), Sher, David A. (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Providence, Rhode Island American Mathematical Society 2021
Schriftenreihe:Memoirs of the American Mathematical Society volume 269, number 1314 (January 2021)
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fibered cusp surgery metrics -- Pseudodifferential operator calculi -- Resolvent construction -- Projection onto the eigenspace of small eigenvalues -- Surgery heat space -- Solving the heat equation -- The R-torsion on manifolds with boundary -- The intersection R-torsion of Dar and L2-cohomology -- Analytic torsion conventions -- Asymptotics of analytic torsion -- A Cheeger-Muller theorem for fibered cusp manifolds.
"Manifolds with fibered cusps are a class of complete non-compact Riemannian manifolds including many examples of locally symmetric spaces of rank one. We study the spectrum of the Hodge Laplacian with coefficients in a flat bundle on a closed manifold undergoing degeneration to a manifold with fibered cusps. We obtain precise asymptotics for the resolvent, the heat kernel, and the determinant of the Laplacian. Using these asymptotics we obtain a topological description of the analytic torsion on a manifold with fibered cusps in terms of the R-torsion of the underlying manifold with boundary"--
Beschreibung:"January 2021, volume 269, number 1314 (fifth of 7 numbers)."
Literaturverzeichnis: Seite 123-126
Beschreibung:v, 126 Seiten
Illustrationen
ISBN:9781470444228
978-1-4704-4422-8