Kubeflow for machine learning from lab to production

This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Grant, Trevor (VerfasserIn)
Weitere Verfasser: Karau, Holden (VerfasserIn), Lublinsky, Boris (VerfasserIn), Liu, Richard (VerfasserIn), Filonenko, Ilan (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Beijing, Boston, Farnham, Sebastopol, Tokyo O'Reilly November 2020
Ausgabe:First edition
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable
If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Learn how to set up Kubeflow on a cloud provider or on an in-house cluster Train models using Kubeflow with popular tools including scikit-learn, TensorFlow, and Apache Spark Learn how to add custom stages such as serving and prediction Keep your model up-to-date with Kubeflow Pipelines Understand how to validate machine learning pipelines
Beschreibung:xx, 239 Seiten
Illustrationen, Diagramme
ISBN:9781492050124
978-1-4920-5012-4