Fundamentals of data analytics with a view to machine learning

1 Introduction -- 2 Prerequisites from Matrix Analysis -- 3 Multivariate Distributions and Moments -- 4 Dimensionality Reduction -- 5 Classification and Clustering -- 6 Support Vector Machines -- 7 Machine Learning -- Index.

Gespeichert in:
Bibliographische Detailangaben
Weitere Verfasser: Mathar, Rudolf (VerfasserIn), Alirezaei, Gholamreza (VerfasserIn), Balda Cañizares, Emilio Rafael (VerfasserIn), Behboodi, Arash (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Cham Springer 2020
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:1 Introduction -- 2 Prerequisites from Matrix Analysis -- 3 Multivariate Distributions and Moments -- 4 Dimensionality Reduction -- 5 Classification and Clustering -- 6 Support Vector Machines -- 7 Machine Learning -- Index.
This book introduces the basic methodologies for successful data analytics. Matrix optimization and approximation are explained in detail and extensively applied to dimensionality reduction by principal component analysis and multidimensional scaling. Diffusion maps and spectral clustering are derived as powerful tools. The methodological overlap between data science and machine learning is emphasized by demonstrating how data science is used for classification as well as supervised and unsupervised learning. .
Beschreibung:xi, 127 Seiten
Illustrationen, Diagramme
ISBN:9783030568306
978-3-030-56830-6