Fundamentals of data analytics with a view to machine learning
1 Introduction -- 2 Prerequisites from Matrix Analysis -- 3 Multivariate Distributions and Moments -- 4 Dimensionality Reduction -- 5 Classification and Clustering -- 6 Support Vector Machines -- 7 Machine Learning -- Index.
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Cham
Springer
2020
|
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1 Introduction -- 2 Prerequisites from Matrix Analysis -- 3 Multivariate Distributions and Moments -- 4 Dimensionality Reduction -- 5 Classification and Clustering -- 6 Support Vector Machines -- 7 Machine Learning -- Index. This book introduces the basic methodologies for successful data analytics. Matrix optimization and approximation are explained in detail and extensively applied to dimensionality reduction by principal component analysis and multidimensional scaling. Diffusion maps and spectral clustering are derived as powerful tools. The methodological overlap between data science and machine learning is emphasized by demonstrating how data science is used for classification as well as supervised and unsupervised learning. . |
---|---|
Beschreibung: | xi, 127 Seiten Illustrationen, Diagramme |
ISBN: | 9783030568306 978-3-030-56830-6 |