Random environments and the percolation model non-dissipative fluctuations of random walk process on finite size clusters

Dissertation, Universität Potsdam, 2020

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mardoukhi, Yousof (VerfasserIn)
Körperschaft: Universität Potsdam (Grad-verleihende Institution)
Weitere Verfasser: Metzler, Ralf (AkademischeR BetreuerIn), Pikovskij, Arkadij (AkademischeR BetreuerIn), Franosch, Thomas (AkademischeR BetreuerIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Potsdam 2020
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dissertation, Universität Potsdam, 2020
Percolation process, which is intrinsically a phase transition process near the critical point, is ubiquitous in nature. Many of its applications embrace a wide spectrum of natural phenomena ranging from the forest fires, spread of contagious diseases, social behaviour dynamics to mathematical finance, formation of bedrocks and biological systems. The topology generated by the percolation process near the critical point is a random (stochastic) fractal. It is fundamental to the percolation theory that near the critical point, a unique infinite fractal structure, namely the infinite cluster, would emerge. As de Gennes suggested, the properties of the infinite cluster could be deduced by studying the dynamical behaviour of the random walk process taking place on it. He coined the term the ant in the labyrinth. The random walk process on such an infinite fractal cluster exhibits a subdiffusive dynamics in the sense that the mean squared displacement grows as ~t2/dw, where dw, called the fractal dimension of the random walk path, is ...
Beschreibung:kumulative Dissertation
Beschreibung:xxii, 103 Seiten
Illustrationen, Diagramme, Karten