Large-dimensional panel data econometrics testing, estimation and structural changes

"This book aims to fill the gap between panel data econometrics textbooks, and the latest development on "big data", especially large-dimensional panel data econometrics. It introduces important research questions in large panels, including testing for cross-sectional dependence, esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Feng, Qu (VerfasserIn)
Weitere Verfasser: Kao, Chihwa (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: New Jersey World Scientific 2021
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:"This book aims to fill the gap between panel data econometrics textbooks, and the latest development on "big data", especially large-dimensional panel data econometrics. It introduces important research questions in large panels, including testing for cross-sectional dependence, estimation of factor-augmented panel data models, structural breaks in panels and group patterns in panels. To tackle these high dimensional issues, some techniques used in Machine Learning approaches are also illustrated. Moreover, the Monte Carlo experiments, and empirical examples are also utilised to show how to implement these new inference methods. Large-Dimensional Panel Data Econometrics: Testing, Estimation and Structural Changes also introduces new research questions and results in recent literature in this field."
Beschreibung:Includes bibliographical references and index
Beschreibung:x, 156 Seiten
Illustrationen
ISBN:9789811220777
978-981-12-2077-7