Predictions from constraint-based approaches including enzyme kinetics
Dissertation, Universität Potsdam, 2020
Gespeichert in:
1. Verfasser: | |
---|---|
Körperschaft: | |
Weitere Verfasser: | , , , |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Potsdam
14. Februar 2020
|
Schlagworte: | |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dissertation, Universität Potsdam, 2020 The metabolic state of an organism reflects the entire phenotype that is jointly affected by genetic and environmental changes. Due to the complexity of metabolism, system-level modelling approaches have become indispensable tools to obtain new insights into biological functions. In particular, simulation and analysis of metabolic networks using constraint-based modelling approaches have helped the analysis of metabolic fluxes. However, despite ongoing improvements in prediction of reaction flux through a system, approaches to directly predict metabolite concentrations from large-scale metabolic networks remain elusive. In this thesis, we present a computational approach for inferring concentration ranges from genome-scale metabolic models endowed with mass action kinetics. The findings specify a molecular mechanism underling facile control of concentration ranges for components in large-scale metabolic networks. Most importantly, an extended version of the approach can be used to predict concentration ranges without knowledge of ... |
---|---|
Beschreibung: | 1 Band (verschiedene Seitenzählungen) Illustrationen, Diagramme |