Wavelet based approximation schemes for singular integral equations
MRA of function spaces -- Approximations in multiscale basis -- Weakly singular kernels -- An integral equation with fixed singularity -- Cauchy singular kernels -- Hypersingular kernels.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Boca Raton, London, New York
CRC Press Taylor & Francis Group
2020
|
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis zbMATH |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MRA of function spaces -- Approximations in multiscale basis -- Weakly singular kernels -- An integral equation with fixed singularity -- Cauchy singular kernels -- Hypersingular kernels. "Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering"-- |
---|---|
Beschreibung: | Includes bibliographical references (page 269-282) and indexes |
Beschreibung: | ix, 290 Seiten Diagramme |
ISBN: | 9780367199173 978-0-367-19917-3 |