One-dimensional empirical measures, order statistics, and Kantorovich transport distances

This work is devoted to the study of rates of convergence of the empirical measures \mu_{n} = \frac {1}{n} \sum_{k=1}^n \delta_{X_k}, n \geq 1, over a sample (X_{k})_{k \geq 1} of independent identically distributed real-valued random variables towards the common distribution \mu in Kantorovich tran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bobkov, Sergej G. (VerfasserIn)
Weitere Verfasser: Ledoux, Michel (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Providence, RI American Mathematical Society 2019
Schriftenreihe:Memoirs of the American Mathematical Society volume 261, number 1259 (September 2019)
Schlagworte:
Online Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This work is devoted to the study of rates of convergence of the empirical measures \mu_{n} = \frac {1}{n} \sum_{k=1}^n \delta_{X_k}, n \geq 1, over a sample (X_{k})_{k \geq 1} of independent identically distributed real-valued random variables towards the common distribution \mu in Kantorovich transport distances W_p. The focus is on finite range bounds on the expected Kantorovich distances \mathbb{E}(W_{p}(\mu_{n},\mu )) or \big [ \mathbb{E}(W_{p}^p(\mu_{n},\mu )) \big ]^1/p in terms of moments and analytic conditions on the measure \mu and its distribution function. The study describes a variety of rates, from the standard one \frac {1}{\sqrt n} to slower rates, and both lower and upper-bounds on \mathbb{E}(W_{p}(\mu_{n},\mu )) for fixed n in various instances. Order statistics, reduction to uniform samples and analysis of beta distributions, inverse distribution functions, log-concavity are main tools in the investigation. Two detailed appendices collect classical and some new facts on inverse distribution functions and beta distributions and their densities necessary to the investigation.
Beschreibung:"September 2019, volume 261, number 1259 (third of 7 numbers)"
Literaturverzeichnis: Seite 121-126
Beschreibung:v, 126 Seiten
Illustrationen
ISBN:9781470436506
978-1-4704-3650-6