Hybrid machine intelligence for medical image analysis
Preface -- Introduction -- Brain Tumor Segmentation from T1 Weighted MRI Images Using Rough Set Reduct and Quantum Inspired Particle Swarm Optimization -- Automated Region of Interest detection of Magnetic Resonance (MR) images by Center of Gravity (CoG) -- Brain tumors detection through low level f...
Gespeichert in:
Weitere Verfasser: | , , , , |
---|---|
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Singapore
Springer Nature
2020
|
Schriftenreihe: | Studies in computational intelligence
Volume 841 |
Schlagworte: | |
Online Zugang: | Inhaltsverzeichnis Inhaltstext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Preface -- Introduction -- Brain Tumor Segmentation from T1 Weighted MRI Images Using Rough Set Reduct and Quantum Inspired Particle Swarm Optimization -- Automated Region of Interest detection of Magnetic Resonance (MR) images by Center of Gravity (CoG) -- Brain tumors detection through low level features detection and rotation estimation -- Automatic MRI Image Segmentation for Brain tumors detection using Multilevel Sigmoid Activation (MUSIG) function -- Automatic Segmentation of pulmonary nodules in CT Images for Lung Cancer detection using self-supervised Neural Network Architecture -- A Hierarchical Fused Fuzzy Deep Neural Network for MRI Image Segmentation and Brain Tumor Classification -- Computer Aided Detection of Mammographic Lesions using Convolutional Neural Network (CNN) -- Conclusion The book discusses the impact of machine learning and computational intelligent algorithms on medical image data processing, and introduces the latest trends in machine learning technologies and computational intelligence for intelligent medical image analysis. The topics covered include automated region of interest detection of magnetic resonance images based on center of gravity; brain tumor detection through low-level features detection; automatic MRI image segmentation for brain tumor detection using the multi-level sigmoid activation function; and computer-aided detection of mammographic lesions using convolutional neural networks |
---|---|
Beschreibung: | XVI, 293 Seiten Illustrationen |
ISBN: | 9789811389290 978-981-13-8929-0 |