Structural equation modeling applications using Mplus

Confirmatory factor analysis -- Structural equation model -- Latent growth models (LGM) for longitudinal data analysis -- Multi-group modeling -- Mixture modeling -- Sample size for structural equation modeling.

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wang, Jichuan (VerfasserIn)
Weitere Verfasser: Wang, Xiaoqian (VerfasserIn)
Format: UnknownFormat
Sprache:eng
Veröffentlicht: Hoboken, NJ Wiley 2020
Ausgabe:Second edition
Schriftenreihe:Wiley series in probability and statistics
Schlagworte:
Online Zugang:zbMATH
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Confirmatory factor analysis -- Structural equation model -- Latent growth models (LGM) for longitudinal data analysis -- Multi-group modeling -- Mixture modeling -- Sample size for structural equation modeling.
Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes. Explores different methods for sample size estimate and statistical power analysis for SEM. By following the examples provided in this second edition, readers will be able to build their own SEM models using Mplus. Teachers, graduate students, and researchers in social sciences and health studies will also benefit from this book"--
Beschreibung:Literaturverzeichnis: Seite 483-505
Beschreibung:x, 512 Seiten
Diagramme
ISBN:9781119422709
978-1-119-42270-9
9781119422716
9781119422723