Structural equation modeling applications using Mplus
Confirmatory factor analysis -- Structural equation model -- Latent growth models (LGM) for longitudinal data analysis -- Multi-group modeling -- Mixture modeling -- Sample size for structural equation modeling.
Gespeichert in:
1. Verfasser: | |
---|---|
Weitere Verfasser: | |
Format: | UnknownFormat |
Sprache: | eng |
Veröffentlicht: |
Hoboken, NJ
Wiley
2020
|
Ausgabe: | Second edition |
Schriftenreihe: | Wiley series in probability and statistics
|
Schlagworte: | |
Online Zugang: | zbMATH |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Confirmatory factor analysis -- Structural equation model -- Latent growth models (LGM) for longitudinal data analysis -- Multi-group modeling -- Mixture modeling -- Sample size for structural equation modeling. Discusses and demonstrates various SEM models using both cross-sectional and longitudinal data with both continuous and categorical outcomes. Explores different methods for sample size estimate and statistical power analysis for SEM. By following the examples provided in this second edition, readers will be able to build their own SEM models using Mplus. Teachers, graduate students, and researchers in social sciences and health studies will also benefit from this book"-- |
---|---|
Beschreibung: | Literaturverzeichnis: Seite 483-505 |
Beschreibung: | x, 512 Seiten Diagramme |
ISBN: | 9781119422709 978-1-119-42270-9 9781119422716 9781119422723 |